Dissolved Gas Analysis (DGA)

Transformer Concepts & Applications Seminar Goldsboro, NC Sep 17-19, 2024

Jeff Neiman / James Gardner Quality Assurance & Test / Application Engineer

© Prolec-GE Waukesha, Inc.

Agenda

- Background
- Methods of Fault Gas Detection
- Why DGA?
- Gases of Interest
- DGA Technique
- Industry Standards
- Interpretation of DGA Results
- DGA Example
- Advantages

- Disadvantages
- Considerations
- Taking a DGA Sample
- Furans & Other Analyses
- Fault Examples

Insulating materials (oil, paper, etc) inside a transformer breaks down from

Fault categories:

- Localized overheating
- General overheating
- Partial Discharge/Corona
- Arcing

These gases can indicate:

- Fault condition
- Materials involved in the fault
- Severity of the fault condition

Abnormal energy applied to mineral oil breaks some chemical bonds in the oil producing combustible gas.

waukerha

Background

Energy applied to insulation paper breaks some chemical bonds and produces Carbon Dioxide, Carbon Monoxide, Water and 'Furans'.

Gas generation in oil verses temperature.

Saturation levels in oil vary with temperature based on curves below.

waukesha	IV
----------	----

Solubility of Gases in Transformer Oil

	(Percent by Volume)				
H ₂	Hydrogen	7.0			
N ₂	Nitrogen	8.6			
CO ₂	Carbon Monoxide	9.0			
O ₂	Oxygen	16			
CH ₄	Methane	30			
CO ₂	Carbon Dioxide	120			
C_2H_6	Ethane	280			
C_2H_4	Ethylene	280			
C_2H_2	Acetylene	400			
Sta	tic Equilibrium Pressure 1 Atmosphere	e at 25°C			

Example: Oil will hold about 9 cu-ft of Nitrogen per 1000 gallons of oil.

- Distribution of gases
- Rate of generation

- Type of faultSeverity of fault
- By detecting and interpreting certain key gases and their ratios, transformer problems can be exposed.
- Data from fault gas analysis can provide

 a) Advance warning of incipient faults
 b) A means for conveniently scheduling repairs
 c) Monitor the rate of fault development
 d) Root cause investigations after failures have occurred

Methods of Fault Gas Detection

Physical gas	Interpretation
formation	of results

Known science

Years of empirical data

Two main methods of Sampling a) Gas blanket over oil

b) From oil

Why DGA?

Disadvantages of gas blanket sampling

- Not all transformers have a gas blanket above oil
- Gas space concentrations must be converted to oil concentrations before interpretation
- Gases generated in the oil take time to partition into the gas space and achieve equilibrium
- TCG monitoring can provide an alarm and data and gas generation rate but not individual gases
- Interpretation ratios are different in the gas space vs. in oil

Gases of Interest

Enough useful information can be extracted from 9 gases:

Atmospheric Gasses

- Nitrogen (N2)
- Oxygen (O2
- Hydrogen (H2)

Oxides of carbon

- Carbon Monoxide (CO)
- Carbon Dioxide (CO2)

Hydrocarbons

- Methane (CH4)
- Ethane (C2H6)
- Ethylene (C2H4)
- Acetylene (C2H2)

Gases of Interest (cont.)

DGA Technique

- Diagnostic technique useful for preventive maintenance
- Oil sample is extracted from the transformer
- Involves extracting the gases from the oil and injecting them into an equipment called gas chromatograph

Industry Standards

Standards associated with DGA:

Interpretation of DGA Results

- Analysis of these gases and their interpretation is an art
- Variability in the interpretation depends on:
 - Type/brand/geometry of the transformer
 - Fault temperatures
 - Solubility and degree of saturation of various gases in oil
 - Type of oil preservation system
 - Type and rate of oil circulation
 - Types of materials in contact with oil
 - Sampling and measuring processes themselves
 - Lack of trend data
 - Residual gas from past events
 - Insufficient gas concentration to use for analysis

Interpretation of DGA Results (cont.)

Interpretation methods by which faults can be detected:

- IEEE C57.104-2008
- Key Gas Analysis
- Roger's Ratios
- Doernenburg's State Estimation
- Duval's Triangle

Interpretation of DGA Results – IEEE C57.104

Interpretation of DGA Results – IEEE C57.104

Table 1—90th percentile gas concentrations as a function of O₂/N₂ ratio and age in µL/L (ppm)

		O_2/N_2 Ratio ≤ 0.2				O ₂ /N ₂ Ratio > 0.2		
		Transformer Age in Years				Transformer Age in Years		
		Unknown	1 – 9	10 - 30	>30	Unknown	1-9	10-30 >30
	Hydrogen (H ₂)	80		75	100	40		40
ſ	Methane (CH ₄)	90	45	90	110	20		20
Ī	Ethane (C2H6)	90	30	90	150	15		15
"	Ethylene (C ₂ H ₄)	50	20	50	90	50	25	60
Gai	Acetylene (C ₂ H ₂)	1	1			2	2	
	Carbon monoxide (CO)	900	900			500		500
	Carbon dioxide (CO2)	9000	5000	1000	0	5000	3500	5500
NOT did n	E—During the data analy ot contribute in significan	sis, it was dete t way to the de	rmined the	at voltage con of values	lass, M provide	VA, and volun ed in Table 1.	ne of mine	ral oil in the unit

Interpretation of DGA Results – IEEE C57.104

Table 3— 95th percentile values for absolute level change between successive laboratory DGA samples in µL/L (ppm)

		Maximum µL/L (ppm) variation between consecutive laboratory DGA samples			
		O ₂ /N ₂ Ratio ≤ 0.2	O ₂ /N ₂ Ratio > 0.2		
	Hydrogen (H2)	40	25		
	Methane (CH4)	30	10		
-	Ethane (C ₂ H ₆)	25	7		
Gas	Ethylene (C ₂ H ₄)	20			
Ĭ	Acetylene (C ₂ H ₂)	Any In	crease		
	Carbon monoxide (CO)	250	175		
	Carbon dioxide (CO ₂)	2500	1750		
NOTI	E-Contribution of voltage class, MVA, and volv	ume of mineral oil in the unit was no	ot studied for Table 3 as they		

NOTE—Contribution of voltage class, MVA, and volume of mineral oil in the unit was not studied for Table 3 as they have not been retained for Table 1 and Table 2. Data was insufficient to study age influence.

Interpretation of DGA Results – IEEE C57.104

Table 4—95th percentile values from multi-points (3-6 points) rate analysis of laboratory DGA samples with all gas levels below Table 1 values, in µL/L/year (ppm/year)

		Maximum µL/L/year (ppm/year) rate in function of the period between first and last point of the laboratory DGA series (3 to 6 samples)					
		O2/N2 R	atio ≤ 0.2	O ₂ /N ₂ R	Ratio > 0.2		
		Perio	d between first and	last point of the	series		
		4-9 Months	10-24 Months	4-9 Months	10-24 Months		
	Hydrogen (H ₂)	50	20	25	10		
	Methane (CH ₄)	15	10	4	3		
	Ethane (C ₂ H ₆)	15	9	3	2		
Gas	Ethylene (C ₂ H ₄)	10	7	7	5		
	Acetylene (C ₂ H ₂)	Any incre	easing rate	Any incr	reasing rate		
	Carbon monoxide (CO)	200	100	100	80		
	Carbon dioxide (CO2)	1750	1000	1000	800		
NOTE—Contribution of voltage class, MVA, and volume of mineral oil in the unit was not studied for Table 4 as they have not been retained for Table 1 and Table 2. Data was insufficient to study age influence							

Interpretation of DGA Results – Key Gas Analysis

Each 'Key Gas' is identified with a certain fault

Key Gas
CO/CO2 (Carbon Oxides)
C2H4 (Ethylene)
H2 (Hydrogen)
C2H2 (Acetylene)

Examples:

S1 No	Fault	Principle gas	CO	H ₂	CH4	C_2H_6	C ₂ H ₄	C_2H_2
1	Overheated oil	Ethylene C ₂ H ₄	-	2%	16%	19%	63%	-
2	Overheated cellulose	Carbon monoxide CO	92%	-	-	-	-	-
3	Corona in oil	Hydrogen H ₂	-	85%	13%	1%	1%	
4	Arcing in oil	Acetylene C ₂ H ₂	-	60%	5%	2%	3%	30%

Interpretation of DGA Results – Roger's Ratio

• Method to determine fault based on relative concentrations of five gases:

Hydrogen, Ethane, Ethylene, Methane and Acetylene

- R1 = Acetylene/Ethylene
- R2 = Methane/Hydrogen
- R3 = Ethylene/Ethane
- Code assigned based on relative ratios of above gases
- Set of code numbers defines one among eight faults

Interpretation of DGA Results ____ Roger's Ratio

-		_	-	-			
Cod	le range of ratios	<u>C₂H</u> ₂ C ₂ H ₄	CH4 H2	$\frac{C_2H_4}{C_2H_6}$	Detection limits and 10 x detection limits are shown below: C ₂ H ₂ 1 ppm 10 ppm C ₂ H, 1 ppm 10 ppm		
	<0.1 0.1-1 1-3 >3	0 1 1 2	1 0 2 2	0 0 1 2	CH ₄ 1 ppm 10 ppm H ₂ 5 ppm 50 ppm C ₂ H ₆ 1 ppm 10 ppm		
Case	Fault Type				Problems Found		
0	No fault	0	0	0	Normal aging		
1	Low energy partial discharge	1	1	0	Electric discharges in bubbles, caused by insulation voids or super gas saturation in oil or cavitation (from pumps) or high moisture in oil (water vapor bubbles).		
2	High energy partial discharge	1	1	0	Same as above but leading to tracking or perforation of solid cellulose insulation by sparking, or arcing; this generally produces CO and CO ₂ .		
3	Low energy discharges, sparking, arcing	1-2	0	1-2	Continuous sparking in oil between bad connections of different potential or to floating potential (poorly grounded shield etc); breakdown of oil dielectric between solid insulation materials.		
4	High energy discharges, arcing	1	0	2	Discharges (arcing) with power follow through; arcing breakdown of oil between windings or coils, or between coils and ground, or load tap changer arcing across the contacts during switching with the oil leaking into the main tank.		
5	Thermal fault less than 150 °C (see note 2)	0	0	1	Insulated conductor overheating; this generally produces CO and CO ₂ because this type of fault generally involves cellulose insulation.		
6	Thermal fault temp. range 150-300 °C (see note 3)	0	2	0	Spot overheating in the core due to flux concentrations. Items below are in order of increasing temperatures of hot spots. Small hot spots in core. Shorted laminations in core. Overheating of copper conductor from eddy currents. Bad connection on		
7	Thermal fault temp. range 300-700 °C	0	2	1	winding to incoming lead, or bad contacts on load or no-load tap changer. Circulating currents in core; this could be an extra core ground, (circulating currents in the tank and core); this could also mean stray flux in the tank.		
8	Thermal fault temp. range over 700 °C (see note 4)	0	2	2	These problems may involve cellulose insulation which will produce CO and CO_2 .		

Interpretation of DGA Results – Doernenburg's ^{woukerho} State of Estimation

- Similar to Roger's ratios but with four ratios instead of three
 - Ratio 1: Methane/Hydrogen
 - Ratio 2: Acetylene/Ethylene
 - Ratio 3: Acetylene/Methane
 - Ratio 4: Ethane/Acetylene

Indicated Fault	Ratio 1	Ratio 2	Ratio 3	Ratio 4
Diagnosis				
Thermal	0.1-1.0	0.75 – 1.0	0.1 – 0.3	0.2 - 0.4
Decomposition				
Corona	0.01 - 0.1	Not significant	0.1 – 0.3	0.2 - 0.4
Arcing	0.1 - 1.0	0.75 - 1.0	0.1 – 0.3	0.2 - 0.4

Interpretation of DGA Results – Duval's Triangle and Pentagons

- Developed using a database of thousands of DGAs and transformer problem diagnoses
- This method describes 6 basic fault types
 - PD = Partial Discharge
 - T1 = Thermal fault < 300C</p>
 - T2 = Thermal fault between 300C to 700C
 - T3 = Thermal fault > 700C
 - D1 = Low energy discharge (Sparking)
 - D2 = High energy discharge (Arcing)
 - DT = Mix of thermal and electrical faults

Interpretation of DGA Results – Duval's Triangle

Advantages of DGA

- Dissolved gases are detectable in low concentration levels (parts per million - ppm)
- Advanced warning of incipient faults
- Status checks on new or repaired units
- Convenient scheduling of repairs
- Monitoring of units under overload
- Information about fault can reduce equipment downtime
- Helps to make a prognosis on the life of a transformer
- Information to perform root-cause analysis after a failure has occurred

Disadvantages of DGA

- DGA cannot detect location of a fault
- Preventing acute faults which develop within seconds or minutes
- Insulation degradation caused by elevated temperatures (<150 C) for a long time
- If the transformer has been refilled with fresh oil, results may not be indicative of faults

Considerations for Transformer Users

- Interpretation is an art, consider the factors which lead to the variability in analysis
- Residual gases in the oil from previous faults might lead to misleading interpretations
- More critical the unit, more frequently it should be sampled
- There are no standard levels of concern/action levels of gas concentration, different companies have their own levels
- As key gas concentrations approach the action levels, consideration should be given to taking the transformer out of service for further testing and inspection
- Consider 'online' monitoring as some monitors do much of the analysis for you.

Considerations for Transformer Users (cont.)

Factors affecting effectiveness of DGA

- Use only trained and qualified people to take oil (or gas) samples
- Carefully select a laboratory for the analysis
- Compare transformers on an equal oil volume basis
- Establish a base line measurement for each transformer
- Establish a sampling plan to generate trend data
- Repeat sampling and analysis to confirm the diagnosis before taking drastic action on a single sample

How to Take a DGA Sample

Example: Other Oil Diagnostics

		EIDMANN ELECTRI	CAL TECHNOLOGY	TEST REPO
	ANN 3430 PRO	GRESS DRIVE, UNIT	B + BENSALEM. PA + 19020	01-6794494-478216
		215 639 8599 +	215 639 8577	Page 2 o
		WWW.WEIDMANN-D	AGNOSTICS.COM	Fage 2 0
SPX Transformer Solutions	Inc Serial#:	RISING SUN	Mfr: ABB	Control#: 6794494
2701 US HWY 117 SOUTH	Location:	RISING SUN	kV:	Order#: 478216
	Equipment:	TRANSFORMER	kVA:	Account: 1371
GOLDSBORO, NC 27530	US Compartment:	MAIN(BOTTOM)	Year Mf'd:	Received: 06/19/20
ATTN: SAMUEL CAUDILL	Breathing:	SEAL	Syringe ID: V372	Reported: 07/07/20
PO#: 121775-002	Bank:	Phase:	Bottle ID:	
Project ID:	Fluid: MIN		Sampled By:	
Customer ID: PCL				
	Lab Control Number	: 6794494		
	Date Sampled	: 06/18/2015		
	Order Number	478216		
	Oil Temp	:		
PER IEEE C57.106-2006	Interfacial Tension	: Acceptable for equi	ment >= 230 kV for in-service oil - kV	not provided (32 dynes/cm min
(most recent sample)	Acid Number	Acceptable for equi	ment >= 230 kV for in-service oil - kV	not provided (0.1 mg KOH/g mg
(Color Number and Visua	Diagnostic not appli	cable Diagnostic not applicable	
	Dielectric Breakdown D-877	Diagnostic not appli	cable	
	Power Eactor @250	: Accentable for equi	$ment \ge 230 \text{ kV}$ for in-service oil - kV	not provided (0.5% max)
	Oxidation Inhibitor	Diagnostic not appli	cable for type 1 oil. Acceptable for in-s	envice oil type 2 (0.09% min)
Comment:	Oxidation minibitor	. Diagnostic not appli	cable for type 1 on. Acceptable for in-s	ervice on type 2 (0.05% min).
Corrosive Sulfur in Oil	ASTM Test Metho	Classification	Pecult	
(most recent comple)	ASTM Test metho		Non Correstive	
(most recent sample)	0-1273		Non-Conosive	
Comment.	2 Euroldobydo (ppb)	. 60		
Furanic Compound	2-Furaidenyde (ppb	. 09		
D-5837° 5	-Hydroxy-metnyl-furaidenyde (ppb	< 10		
	2-Acetylfuran (ppb	< 10		
	5-Methyl-2-turaidenyde (nnn			
	o-metriyi-z-idraidenyde (ppb)			
Furanic Compound Diagr	2-Furyl alcohol (ppb)	: < 10		
Furanic Compound Diagr New insulation with a approximately 500 and strength and may resu	2-Furyl alcohol (pb) nostics (most recent sample): high degree of mechanical strength w d paper with less than 250 is in its "Ol ilt in a transformer failure. The above	ill typically have a Deg d Age." Severely degr estimations are based	ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or les on a study by Chendong of GSU tran	00. "Middle Aged" paper is s will have very little mechanica sformers filled with mineral oil.
Furanic Compound Diagr New insulation with a approximately 500 and strength and may resu Estimated An	2-Furyl alcohol (ppb) 2-Furyl alcohol (ppb) hostics (most recent sample): high degree of mechanical strength w d paper with less than 250 is in its "OI it in a transformer failure. The above verage Degree of Polymerization (C	ill typically have a Deg d Age." Severely degr estimations are based P): 763	ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or les on a study by Chendong of GSU tran	100. "Middle Aged" paper is is will have very little mechanica sformers filled with mineral oil.
Furanic Compound Diagr New insulation with a approximately 500 am strength and may resu Estimated Av Estimated Av	2-Furyl alcohol (pp) 2-Furyl alcohol (pp) nostics (most recent sample): high degree of mechanical strength w d paper with less than 250 is in its "Ol lit in a transformer failure. The above verage Degree of Polymerization (C perating Age of the Equipment: 11.	ill typically have a Deg d Age." Severely degr estimations are based P): 763	ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or les on a study by Chendong of GSU tran	00. "Middle Aged" paper is s will have very little mechanica sformers filled with mineral oil.
Furanic Compound Diagr New insulation with a approximately 500 an strength and may resu Estimated Av Estimated Op Notations:	2-Furyl alcohol (ppb 2-Furyl alcohol (ppb nostics (most recent sample): high degree of mechanical strength w d paper with less than 250 is in its "00 lit in a transformer failure. The above verage Degree of Polymerization (E perating Age of the Equipment: 11.	ill typically have a Deg d Age." Severely degr estimations are basec P): 763 5	ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or les on a study by Chendong of GSU tran	100. "Middle Aged" paper is s will have very little mechanica sformers filled with mineral oil.
Furanic Compound Diagr New insulation with a approximately 500 an strength and may resu Estimated A Estimated O Notations:	2-Furyl alcohol (ppb 2-Furyl alcohol (ppb hostics (most recent sample): high degree of mechanical strength w d paper with less than 250 is in its "0 ult in a transformer failure. The above verage Degree of Polymerization (D perating Age of the Equipment: 11.	ill typically have a Deg d Age." Severely degr estimations are based P): 763 5	ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or les on a study by Chendong of GSU tran	300. "Middle Aged" paper is s will have very little mechanica sformers filled with mineral oil.
Furanic Compound Diagr New insulation with a approximately 500 an strength and may resu Estimated A Estimated O Notations: Comment: Metals	2-Furyl alcohol (ppb 2-Furyl alcohol (ppb hostics (most recent sample): high degree of mechanical strength w d paper with less than 250 is in its "00 lit in a transformer failure. The above verage Degree of Polymerization (D perating Age of the Equipment: 11. Silver (Ag) (ppm)	C C	ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or 165 on a study by Chendong of GSU tran	000. "Middle Aged" paper is us will have very little mechanica sformers filled with mineral oil.
Furanic Compound Diagr New insulation with a approximately 500 an strength and may resu Estimated A Estimated O Notations: Comment: Metals Dissolved	2-Furyl alcohol (ppb 2-Furyl alcohol (ppb hostics (most recent sample): high degree of mechanical strength w d paper with less than 250 is in its "OI ill in a transformer failure. The above verage Degree of Polymerization (IC perating Age of the Equipment: 11. Silver (Ag) (ppm Aluminum (Al) (ppm)		ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or les on a study by Chendong of GSU tran	00. "Middle Aged" paper is is will have very little mechanica sformers filled with mineral oil.
Furanic Compound Diagr New insulation with a approximately 500 an strength and may resu Estimated Av Estimated Av Estimated Av Comment: Metals Dissolved Fault, Wear and	2-Furyl alcohol (ppb) 2-Furyl alcohol (ppb) hostics (most recent sample): high degree of mechanical strength w d paper with less than 250 is in its "Ol it in a transformer failure. The above verage Degree of Polymerization (D perating Age of the Equipment: 11. Silver (Ag) (ppm, Aluminum (Al) (ppm, Barium (Ba) (ppm)	() () () () () () () () () (ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or les on a study by Chendong of GSU tran	00. "Middle Aged" paper is is will have very little mechanica sformers filled with mineral oil.
Furanic Compound Diagr New insulation with a approximately 500 an strength and may resu Estimated Av Estimated Op Notations: Comment: Metals Dissolved Fault, Wear and Contamination	2-Furyl alcohol (ppb astrong alcohol (ppb hostics (most recent sample): high degree of mechanical strength w d paper with less than 250 is in its "00 lift in a transformer failure. The above verage Degree of Polymerization (D perating Age of the Equipment: 11. Silver (Ag) (ppm Aluminum (Al) (ppm Barium (Ba) (ppm Boron (B) (ppm	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or les on a study by Chendong of GSU tran	300. "Middle Aged" paper is s will have very little mechanica sformers filled with mineral oil.
Furanic Compound Diagr New insulation with a approximately 500 an strength and may resu Estimated A Estimated O Notations: Comment: Metals Dissolved Fault, Wear and Contamination D-7151 ⁵	Silver (Ag) (pp) 2-Furyl alcohol (ppb) hostics (most recent sample): high degree of mechanical strength w d paper with less than 250 is in its "00 lit in a transformer failure. The above verage Degree of Polymerization (D perating Age of the Equipment: 11. Silver (Ag) (ppm Aluminum (Al) (ppm Barium (Ba) (ppm Calcium (Ca) (ppm	C = 1 C = 1	ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or les on a study by Chendong of GSU tran	300. "Middle Aged" paper is us will have very little mechanica sformers filled with mineral oil.
Furanic Compound Diagr New insulation with a approximately 500 an strength and may resu Estimated A Estimated O Notations: Comment: Metals Dissolved Fault, Wear and Contamination D-7151 ⁵	Silver (Ag) (pp) 2-Furyl alcohol (ppb) hostics (most recent sample): high degree of mechanical strength w d paper with less than 250 is in its "00 it in a transformer failure. The above verage Degree of Polymerization (C perating Age of the Equipment: 11. Silver (Ag) (ppm Aluminum (Al) (ppm Barlum (Ba) (ppm Calcium (Ca) (ppm Chromium (Cr) (ppm	. 2.1 . < 10 III typically have a Deg dege. 'Severely degr estimations are based P): 763 5 . < 0.5	ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or 16s on a study by Chendong of GSU tran	100. "Middle Aged" paper is swill have very little mechanica sformers filled with mineral oil.
Furanic Compound Diagr New insulation with a approximately 500 an strength and may resu Estimated Av Estimated Av Estimated Av Comment: Metals Dissolved Fault, Wear and Contamination D-7151 ⁵	2-Furyl action yet, ypp. 2-Furyl alcohol (ppb hostics (most recent sample): high degree of mechanical strength w d paper with less than 250 is in its "Ol it in a transformer failure. The above verage Degree of Polymerization (C perating Age of the Equipment: 11. Silver (Ag) (ppm Aluminum (Al) (ppm Barium (Ba) (ppm Calcium (Ca) (ppm Chromium (Cr) (ppm Copper (Cu) (bpm	. 2.1 . < 10	ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or les on a study by Chendong of GSU tran	100. "Middle Aged" paper is is will have very little mechanica sformers filled with mineral oil.
Furanic Compound Diagr New insulation with a approximately 500 an strength and may resu Estimated Av Estimated Op Notations: Comment: Metals Dissolved Fault, Wear and Contamination D-7151 ⁶	2-Furyl action year (pp) 2-Furyl attacking (pp) high degree of mechanical strength w d paper with less than 250 is in its "01 lit in a transformer failure. The above verage Degree of Polymerization (D perating Age of the Equipment: 11. Silver (Ag) (ppm Aluminum (Ai) (ppm Barium (Ba) (ppm) Calcium (Ca) (ppm) Calcium (Ca) (ppm) Copper (Cu) (ppm) Sodium (Na) (opm)	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or les on a study by Chendong of GSU tran	300. "Middle Aged" paper is is will have very little mechanica sformers filled with mineral oil.
Furanic Compound Diagr New insulation with a approximately 500 an strength and may resu Estimated Av Estimated Op Notations: Comment: Metals Dissolved Fault, Wear and Contamination D-7151 ⁵	Silver (Ag) (pp) 2-Furyl alcohol (ppb) hostics (most recent sample): high degree of mechanical strength w d paper with less than 250 is in its "00 ilt in a transformer failure. The above verage Degree of Polymerization (C perating Age of the Equipment: 11. Silver (Ag) (ppm) Aluminum (Al) (ppm Barium (Ba) (ppm) Calcium (Ca) (ppm) Chromium (Cr) (ppm) Copper (Cu) (ppm) Sodium (Na) (ppm) Jron (Fe) (nm)	C = 1 C = 1	ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or les on a study by Chendong of GSU tran	300. "Middle Aged" paper is is will have very little mechanica sformers filled with mineral oil.
Furanic Compound Diagr New insulation with a approximately 500 an strength and may resu Estimated A Estimated O Notations: Comment: Metals Dissolved Fault, Wear and Contamination D-7151 ⁶	Silver (Ag) (pp) 2-Furyl atachiyat (pp) 2-Furyl atachiyat (pp) tostics (most recent sample): high degree of mechanical strength w dopaer with less than 250 is in its "01 it in a transformer failure. The above verage Degree of Polymerization (D perating Age of the Equipment: 11. Silver (Ag) (ppm) Aluminum (Al) (ppm) Barium (Ba) (ppm) Barium (Ba) (ppm) Calcium (Ca) (ppm) Calcium (Ca) (ppm) Copper (Cu) (ppm) Sodium (Na) (ppm) Iron (Fe) (ppm) Magnesium (Ma) (ppm)	. . <td>ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or 16s on a study by Chendong of GSU tran</td> <td>100. "Middle Aged" paper is is will have very little mechanica sformers filled with mineral oil.</td>	ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or 16s on a study by Chendong of GSU tran	100. "Middle Aged" paper is is will have very little mechanica sformers filled with mineral oil.
Furanic Compound Diagr New insulation with a approximately 500 an strength and may resu Estimated Av Estimated Av Estimated Av Comment: Metals Dissolved Fault, Wear and Contamination D-7151 ⁶	2-Furyl attacking (pp) 2-Furyl attacking (pp) hostics (most recent sample): high degree of mechanical strength w d paper with less than 250 is in its "00 lit in a transformer failure. The above werage Degree of Polymerization (E perating Age of the Equipment: 11. Silver (Ag) (ppm Aluminum (Al) (ppm Barium (Ba) (ppm Boron (B) (ppm Calcium (Ca) (ppm Chromium (Cr) (ppm Copper (Cu) (ppm Sodium (Na) (ppm Iron (Fe) (ppm Magnesium (Ma) (ppm	2.1 < 10	ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or 165 on a study by Chendong of GSU tran	100. "Middle Aged" paper is is will have very little mechanica sformers filled with mineral oil.
Furanic Compound Diagr New insulation with a approximately 500 an strength and may resu Estimated Av Estimated Op Notations: Comment: Metals Dissolved Fault, Wear and Contamination D-7151 ⁵	2-Furyl alcohol (ppb) 2-Furyl alcohol (ppb) hostics (most recent sample): high degree of mechanical strength w d paper with less than 250 is in its "00 lit in a transformer failure. The above verage Degree of Polymerization (E perating Age of the Equipment: 11. Silver (Ag) (ppm Aluminum (Al) (ppm Barium (Ba) (ppm) Calcium (Ca) (ppm) Calcium (Ca) (ppm) Copper (Cu) (ppm) Sodium (Na) (ppm) Iron (Fe) (ppm) Magnesium (Mg) (ppm) Molybdenum (Mo) (ppm)	. . < 10	ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or les on a study by Chendong of GSU tran	300. "Middle Aged" paper is is will have very little mechanica sformers filled with mineral oil.
Furanic Compound Diagr New insulation with a approximately 500 an strength and may resu Estimated Av Estimated Av Estimated Av Notations: Comment: Metals Dissolved Fault, Wear and Contamination D-7151 ⁵	2-Furyl action of the second s	. . <td>ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or les on a study by Chendong of GSU tran</td> <td>300. "Middle Aged" paper is is will have very little mechanica sformers filled with mineral oil.</td>	ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or les on a study by Chendong of GSU tran	300. "Middle Aged" paper is is will have very little mechanica sformers filled with mineral oil.
Furanic Compound Diagr New insulation with a approximately 500 an strength and may resu Estimated A Estimated O Notations: Comment: Metals Dissolved Fault, Wear and Contamination D-7151 ⁵	2-Furyl action (pp) 2-Furyl action (pp) hostics (most recent sample): high degree of mechanical strength w d paper with less than 250 is in its "00 lit in a transformer failure. The above verage Degree of Polymerization (D perating Age of the Equipment: 11. Silver (Ag) (ppm Aluminum (Al) (ppm Barium (Ba) (ppm Boron (B) (ppm Calcium (Ca) (ppm Chromium (Cr) (ppm Copper (Cu) (ppm Copper (Cu) (ppm Sodium (Na) (ppm Iron (Fe) (ppm Magnesium (Mg) (ppm Nickel (Ni) (ppm Phosphorus (P) (ppm	. . <td>ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or les on a study by Chendong of GSU tran</td> <td>300. "Middle Aged" paper is is will have very little mechanica sformers filled with mineral oil.</td>	ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or les on a study by Chendong of GSU tran	300. "Middle Aged" paper is is will have very little mechanica sformers filled with mineral oil.
Furanic Compound Diagr New insulation with a approximately 500 an strength and may resu Estimated Av Estimated Av Comment: Metals Dissolved Fault, Wear and Contamination D-7151 ⁶	2-Furyl alcohol (pp) 2-Furyl alcohol (pp) hostics (most recent sample): high degree of mechanical strength w d paper with less than 250 is in its "00 lit in a transformer failure. The above werage Degree of Polymerization (E perating Age of the Equipment: 11. Silver (Ag) (ppm Aluminum (Al) (ppm Barium (Ba) (ppm Boron (B) (ppm Calcium (Ca) (ppm Calcium (Ca) (ppm Chromium (Cr) (ppm Copper (Cu) (ppm Sodium (Na) (ppm Iron (Fe) (ppm Magnesium (Mg) (ppm Molybdenum (Mo) (ppm Nickel (Ni) (ppm Lead (Pb) (ppm		ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or 165 on a study by Chendong of GSU tran	000. "Middle Aged" paper is is will have very little mechanica sformers filled with mineral oil.
Furanic Compound Diagr New insulation with a approximately 500 an strength and may resu Estimated Av Estimated Op Notations: Comment: Metals Dissolved Fault, Wear and Contamination D-7151 ⁵	2-Furyl action (pp) 2-Furyl action (pp) high degree of mechanical strength w d paper with less than 250 is in its "00 lit in a transformer failure. The above verage Degree of Polymerization (E perating Age of the Equipment: 11. Silver (Ag) (ppm Aluminum (Ai) (ppm Barium (Ba) (ppm) Calcium (Ca) (ppm) Calcium (Ca) (ppm) Calcium (Ca) (ppm) Copper (Cu) (ppm) Copper (Cu) (ppm) Magnesium (Mg) (ppm) Molybdenum (Mo) (ppm) Nickel (Ni) (ppm) Lead (Pb) (ppm) Silicon (Si) (ppm)	I	ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or les on a study by Chendong of GSU tran	300. "Middle Aged" paper is is will have very little mechanica sformers filled with mineral oil.
Furanic Compound Diagr New insulation with a approximately 500 an strength and may resu Estimated Av Estimated Op Notations: Comment: Metals Dissolved Fault, Wear and Contamination D-7151 ⁵	2-Furyl atacond (ppb) 2-Furyl atacond (ppb) hostics (most recent sample): high degree of mechanical strength w d paper with less than 250 is in its "01 lit in a transformer failure. The above verage Degree of Polymerization (C perating Age of the Equipment: 11. Silver (Ag) (ppm: Aluminum (Al) (ppm: Aluminum (Al) (ppm: Barium (Ba) (ppm: Calcium (Ca) (ppm: Calcium (Ca) (ppm: Copper (Cu) (ppm: Copper (Cu) (ppm: Sodium (Na) (ppm: Molybdenum (Mo) (ppm: Nickel (Ni) (ppm: Phosphorus (P) (ppm: Lead (Pb) (ppm: Silicon (Si) (ppm: Tin (Sn) (ppm: Calcium (Ca) (ppm: Calcium (Calcium (Ca) (ppm: Calcium (Calcium (C	. . < 10	ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or les on a study by Chendong of GSU tran	300. "Middle Aged" paper is is will have very little mechanica sformers filled with mineral oil.
Furanic Compound Diagr New insulation with a approximately 500 an strength and may resu Estimated A Estimated O Notations: Comment: Metals Dissolved Fault, Wear and Contamination D-7151 ⁵	2-Furyl alcohol (pp) 2-Furyl alcohol (pp) hostics (most recent sample): high degree of mechanical strength w d paper with less than 250 is in its "00 lit in a transformer failure. The above verage Degree of Polymerization (I perating Age of the Equipment: 11. Silver (Ag) (ppm, Aluminum (Al) (ppm, Barium (Ba) (ppm, Barium (Ba) (ppm, Calcium (Ca) (ppm, Calcium (Ca) (ppm, Calcium (Ca) (ppm, Copper (Cu) (ppm, Copper (Cu) (ppm, Copper (Cu) (ppm, Sodium (Na) (ppm, Iron (Fe) (ppm, Magnesium (Mg) (ppm, Nickel (Ni) (ppm, Silicon (Si) (ppm, Tin (Sn) (ppm, Vanadium (V) (ppm,	. . < 10	ree of Polymerization (DP) of 1000-13 aded insulation with a DP of 150 or les on a study by Chendong of GSU tran	300. "Middle Aged" paper is is will have very little mechanica sformers filled with mineral oil.

Notations: 1. Analysis is ISO/EC 17025/2005 accredited, L-A-B Accredited Certificate Number L2303.02 2. This test is conducted by a subcontracted laboratory. 3. Subcontracted laboratory has received ISO Standard 17025 accreditation for this test. 5. This test is conducted by Wedmann Laboratory of the than Primary Lab. 6. Wedmann Laboratory has received ISO Standard 17025 accreditation for this test. 7. Imported Sample: WEIDMANN Electrical Technology accepts no responsibility for these results.

Accredition applies to correct analysis only. The analyses, optimizer or interpretations contained in this report are based geon matrixed and information supplied by the client. WEDMANN Electrical Technology does not interpretations contained in this report are based geon matrixed and information supplied by the client. WEDMANN Electrical Technology are and many based for the providence in the analysis of the analy

Furans

2-Acetyl Furan

Furans

Most analytical Labs determine the concentration of five Furanic compounds:

Compound	Abbreviation	Cause
2-furaldehyde	(2FAL)	General overheating, normal ageing.
5-methyl-2-furaldehyde	(5M2F)	High Temperatures
5-hydroxylmethyl-2-furaldehyde	(5H2F)	Oxidation
2-acetyl furan	(2ACF)	Rare, causes not fully identified
2-furfuryl alcohol	(2FOL)	High Moisture

Note: 2FAL is stable for years while other Furanic compounds are less stable. They tend to form and then degrade to 2FAL over a period of months.

DGA Fault Example (Ester Fluid)

Dissolved Gas Analysis The dissolved gas analysis is run in accordance with ASTM D 3612 and IEC 60567. Values are reported in ppm vol/vol at STP and calibrated with gas-in-oil standards.

							Carbon		Carbon							
	Sample	Top Oil	Hydrogen	Oxygen	Nitrogen	Methane	Monox.	Ethane	Dioxide	Ethylene	Acetylene		COMB	EST TCG	C2H4/	Comb Gas
Report #	Date	Temp °C	(H2)	(O2)	(N2)	(CH4)	(CO)	(C2H6)	(CO2)	(C2H4)	(C2H2)	Total Gas	GAS	%	C2H2	Rate
																ppm/day
122357	10/15/2012	24	58	339	68100	3.0	35	15	143	9.3	18	68720	138	0.20	0.52	0.33
113052	05/10/2012	25	45	524	65700	0.6	33	7.0	116	0	0	66426	86	0.16	0.00	0.00
106288	08/16/2011	25	46	72	64700	0.7	30	8.8	116	0	0	64974	86	0.16	0.00	0.06
95180	02/03/2010	20	26	3060	63400	0	21	5.3	104	0	0	66616	52	0.10	0.00	0.06
91504	07/13/2009	35	18	2490	60900	0	17	4.4	104	0	0	63533	39	0.07	0.00	

INVESTIGATE Arcing in oil. Condition is severe.

DGA Fault Example (LTC)

Sample ID	Col Date	Moisture	Acetylene	Hydrogen	со	Ethylene	Ethane	Methane	T Comb	CO2	Nitrogen	Oxygen	Ethyl/Acety Ratio	
AV25284	10/28/2015	0.0035	654.	53.	36	61.	ND	24.	828.	668	6.6	2.47	0.09	
AW11121	5/2/2016	0.0021	475.	53.	25	68.	ND	19.	640.	629	6.8	2.96	0.14	
AX04882	2/27/2017	0.0054	546.	33.	39	2046.	389.	137.	3190.	620	6.4	2.73	3.75	
AX06034	3/14/2017	0.0014	570.	30.	11	2056.	414.	118.	3199.	606	6.4	3.16	3.61	

