Electrical Design Process

Transformer Concepts & Applications Seminar Goldsboro, NC September 17-19, 2024

© Prolec-GE Waukesha, Inc.

Matthew Lutze Associate Electrical Design Engineer

Matthew joined Prolec-GE Waukesha in January 2024 after graduating from East Carolina University. He works in the Goldsboro facility and has quoted and designed transformers up to 230kV and 60 MVA.

Agenda

- Bid design process
- Parameters affecting bid design
- Final design process
- Design parameters

Transformer Cutaway View

Bid Design Process

Bid Design Parameters

Normal operation – MVA rating, voltage ratio, connection LTC/DETC, % impedance, parallel operation, sound levels

Application – GSU, SAT, UAT Phase Shifting, Multiple Windings, Zig-Zag, Series / Parallel

Transformer Controls & online Monitoring

Customer Specification

Short circuit, overloading, over fluxing, seismic conditions, Geomagnetic induced Current (GIC) Unusual Service Conditions

Type of cooling – Temp rises, Top oil, Average winding, Hot spot winding and core. DGA limits Loss evaluation, Existing size and weight restrictions shipping by rail/road

Dielectric Requirements BILs-LI, SI, induced voltage, applied voltage

Parameters Affecting Bid Design

- Loss evaluation affects the selection of flux density for core and selection of current density for windings
- % impedance affects core and coil dimensions, leakage flux distribution, short circuit stresses and regulation
- % impedance depends on the following:
 - Winding dimensions
 - Voltage per turn
 - Frequency
 - Transformer rating

Parameters Affecting Bid Design (cont.)

- Basic insulation levels (BIL) affect the clearance between windings, phase-to-phase clearances, winding end clearances and tank clearances
- Over-excitation requirements affect selection of flux density, size and weight of core
- Taps purpose, type, range and location affect core and winding design
- Dimension and shipping weight limitations affect core dimensions, flux density and current density

Parameters Affecting Bid Design (cont.)

- Sound level affects the type of core construction, flux density, type of cooling fans
- Temperature rise and type of cooling affects the quantity of radiators and fans
- Overload requirement may increase the quantity of radiators, quantity of fans and winding conductor area
- Parallel operation with existing transformers affects placement of windings on core

Parameters Affecting Bid Design (cont.)

No load loss = (along grain core weight * watt/lb + across grain weight * watt/lb)* correction factor, where: watt/lb. ~ flux density, core grade and correction factor ~ core dimensions and type of core construction

No-load loss at 20° C = loss at T^oC^{*}(1+ (T-20)^{*}Kt), where, Kt = 0.00065 for grain oriented steel

 Load loss depends on winding dimensions, number of turns, current density, conductor type and frequency

Load Loss = I²R loss + Eddy loss + Stray loss

I²R depends on the number of turns, winding dimensions, area of copper conductor

Step Lap Joint

Bid Design Steps

First and Final Consideration:

Optimize the Total Owning Cost = Selling Price + Cost of Losses

Considerations

- Summarize design parameters
- Finalize winding arrangement
 - Standard winding arrangement: Core – TV – TAP – LV – HV
- Select clearances between windings, winding to yoke, phase to phase and winding to tank
- Select type of core construction
 - Mitered or Step-lap core
- Select grade of core steel and winding material (CTC/Mag Wire)
- Input limits for winding current density, flux density, core overall dimensions (maintaining shipping limits)

Input to the Optimizer Program

Customer-Specified Loss Evaluation Trend

Bid Design Steps

- Bid optimizer software computes different designs based on loss evaluation and meeting performance parameters as per specification
- Computation considers
 - Flux Density, Core Dimensions
 - Winding Dimensions, Current Density
 - Dielectric, Short Circuit and Thermal
 - Overall Size and Weight Restrictions
- Evaluate various design options
- Select the optimum feasible design meeting customer and design requirements with lowest total owning cost

Bid design is the launch point for the final design (after receipt of PO).

waukesha

Bid Design Output – Performance Specification

waukerha

FOR: 1687

Performance Specification-R1

Quotation No: 700	003912 Item No: 00	00010 Project Name:	168/224/280_345-115-14.4 LTC AUTO - NEUTRAL END
-------------------	--------------------	---------------------	--

AUTOTRA	NSFORM	IER RAT	INGS							
Phase	3	Cooling	HV V	olts	XV Volts		YV Volts		ZV (TV) Volts	
Frequency	60	Class	345,000 GrdY		115,000 GrdY				14,400 Delta - Lo	
Temp Rise ^o C	65	ONAN	168.00		168.00				45.00	
Insulating	Oil	ONAF	224.00		224.00				60.00	
		ONAF	280.00		280.00				75.00	

Terminal	Style	Taps or KV	Capacity
HV	DETC	+ 2 / - 2 @ 2.500 %	FULL
H0X0	On Tank LTC	+16 / -16 @ 0.625 %	REDUCED

PERCENT I	AUXILIA IL LOSSES AND SOUND LEVEL								
%	Windings	At MVA	168.00	Class ONAN		Cooling	Sound Level dB 78		
6.00	H-X	168.0	168.00 224.00	ONAN		9.200	/8 80		
	H-Y		280.00	ONAF		18,500	81		
	Х-Ү		The above v					J \	
	equipment (heaters, control devices, etc.) losses of 2,000 watts								
INSULATION LAPELS (KV) Terminal Winding Bushing			PERFORMANCE BASED ON A LOADING OF						
	Winding			MANCE B				-	
HVI Class		Cooling			Sound	Level	dB		
XV			00						
						78			
							10		
Y									
		0.200		80					
UNAL		9,200		00					
R									
ONAF		18,500			81				
UI			10,500		01				
0.8	3.83	•							
0.0	5.65								

Non-Standard Bid Designs

- Dual High Voltage, Dual Low Voltage, DETC on HV and LTC on LV
- Dual Low Voltage with RMVs on both LVs and DETC on HV
- Non-integer Low and High Voltage
- Autotransformer with co-ratio less than 0.4
- Autotransformer with Line end LTC >350 KV BIL
- Re-connectable any non integer Ratio for LV or HV
- Re-connectable with HV> 900 KV BIL
- Double LV stack Design with unequal voltage or MVA

Final Design Process

Final Design Steps

Final Design Steps (cont.)

- Review bid design, customer requirements
- Find a reference design, if available
- Compute the design insulation level for insulation design
- Finalize core diameter, winding turns, type of winding, gap between windings and end clearances
- Check voltage ratio error, change number of turns, if required
- Select number of turns/disk, tap sections, conductor paper, type of conductor, duct between sections/turns

Final Design Steps (cont.)

- Balance ampere-turns in LV windings, in case of de-energized taps in the main HV winding
- Calculate % impedance, core loss, load loss and compare with guaranteed parameters
- Change conductor size and winding height, as required
- Calculate impulse voltage distribution in winding and between gaps
- Finalize wound-in-shield requirement for HV winding

Ampere – Turn Balance

TOP HALF OF CENTRE FED WINDING

Final Design Steps (cont.)

- Review conductor insulation, gap between windings based on the calculated transient voltages
- Calculate % impedance at rated and tap extremes between windings and compute fault currents
- Perform short-circuit withstand calculations, analyze stresses in windings, key-spacers, end forces; based on results, change winding conductor if required and recalculate the stresses

Electrostatic Field Analysis

Final Design Steps (cont.)

- Recalculate impulse withstand, if required
- Perform leakage flux analysis, calculate tank losses, eddy losses, frame losses
- Calculate temperature rise of clamps and tank
- Increase end clearances and tank clearances, as required
- Calculate flitch plate and outer core temperature rise and split flitch plate/outer core packet, if needed

Leakage Flux Analysis

Final Design Steps (cont.)

- Perform temperature rise calculations and finalize number of radiators, fans to limit the guaranteed top oil rise, average winding rise, hot spot temperature; perform overload temperature rise calculations, if specified
- Prepare detailed design sheets which provide technical information for winding sheets, internal layout, external layout, controls and approval/manufacturing drawings
- Prepare detailed test specification based on ANSI and customer requirements

Design Parameters - 1

- Voltage per turn ~ frequency * core area * flux density
- No. of turns = Phase voltage / voltage per turn
- Voltage ratio V_2 / V_1 = Turns ratio N_2 / N_1
- No load loss = (along grain core weight * watt/lb + across grain weight * watt/lb) * correction factor
- watt/lb. ~ flux density, core grade
- correction factor ~ core dimensions, core construction
- No-load loss at 20°C = No load loss at T°C*(1+ (T-20)*Kt)

Kt = .00065 for grain oriented steel

Design Parameters - 2

- Load Loss = I²R loss + Eddy loss + Stray loss
- Eddy losses depend on conductor thickness and width and the leakage flux distribution
- Stray loss ~ % impedance, winding dimensions and tank clearances
- % Impedance ~ (Current*turns*radial winding dimensions) / (axial dimensions * voltage per turn)

Design Parameters - 3

- Sound level ~ flux density, core construction & distance dB₁ = 20 * log(X₂/X₁) + dB₂ where, X₂ or X₁ is the distance of point 2 or point 1 from center of transformer
- % Regulation = (%X sinø + %R cosø +((%X cosø -% R sinø)²/200))
 where, cosø = power factor %X = Reactance %R = (Total loss in kW/kVA)*100
- % Efficiency = (1 Total loss in kW/kVA)*100

Substantial design work is complete with approval package submission.

Design Process

Contact

Matthew Lutze Associate Electrical Design Engineer Prolec-GE Waukesha, Inc.

Matthew.lutze@prolec.energy

www.waukeshatransformers.com