Regional Technical Seminar

Short Circuit Design Considerations

Transformer Regional Technical Seminar Minneapolis, MN August 15, 2024

Michael Liesch Senior Electrical Design Engineer

Mike started with Prolec GE Waukesha in 2016, bringing with him 3 years of experience in inspecting and testing transformers. He holds a Bachelors of Science degree in Electrical Engineering from the Milwaukee School of Engineering.

Agenda

- Review transformers: How they work (textbook vs reality)
- Visualize relationship between Current and Magnetic Forces
- Understand fault current from time t = 0 to t = ?
- Understand formulas and variables to calculate short circuit currents
- Discuss fault types
- Calculation Example: Calculate short circuit amps
- Get a mental picture of magnetic forces acting within a transformer resulting from short circuit

Part 1 – Transformer Basics:

- How they work
- How they are actually built

Textbook Transformer (step by step)

Part 2 – Transformer Basics:

- Fundamentals of Magnetics
 and Forces
- Magnetic Fields Around Conductors
- Forces That Result

Current & Magnetic Field Relationships

Right hand rule

Consider a section of wire —

resulting magnetic field direction (CW)

Current Flow (I)

Effect of Many Turns

- Fields at inner/outer edges add together.
- One uniform magnetic path results
- Magnetic field (B) intensifies with # turns (N) or the current (I).

$\mathbf{B} \propto \mathbf{N} \mathbf{I}$

Leakage Field / Current / Force Relationships

Effect of Many Turns

- Fields at inner/outer edges add together
- One uniform magnetic path results
- Magnetic Forces (F) intensifies with # turns (N)

 $B \propto NI$

$$dF = N \times IB dL$$

 $F \propto (NI)^2$

Prolec GE Waukesha / Proprietary and Confidential © SPX Transformer Solutions, Inc.

September 24, 2024

Pictorial of actual FEA field plots

Axial locations of where HV DETC taps are located

waukesha

Prolec GE Waukesha / Proprietary and Confidential

Note: The force arrows

are acting in 3-D and perpendicular to the

mag fields

Summary of what we discussed so far...

- Magnetic forces are produced whenever
 - You have current flowing thru a conductor, and
 - A leakage magnetic field also passes thru the conductor.
 - Resulting forces have a direction of 90 degrees to the direction of current through the conductor versus the direction of the leakage magnetic field around the conductor (left hand rule)
 - The leakage magnetic fields can pass thru conductors at any angle (3 dimensional)
 - Forces then are also 3 dimensional in nature

Magnetic Forces

 A net magnetic force also results <u>between two coils</u> (i.e. HV to LV), because the two coils are essentially two huge electro-magnets that repel each other.

Summative force between these coils could be millions of pounds

- The inner coil experiences net inward radial "crushing" compressive forces
- The outer coil experiences net outward radial expanding type forces

Part 3 – Short Circuits (Faults):

- What are they?
- How do they happen?
- What do they do to my transformer?

Normal Transformer Operation

Normal Circuit

• An AC source supplies power to a given load (i.e. a city). A complete circuit has a source, with power entering a load and returning to the source. Amount of current that flows is directly related to the load on the transformer.

Prolec GE Waukesha / Proprietary and Confidential

September 24, 2024

4

What is a Fault?

System Fault

- An un-intended "electrical connection" made between two energized components having different voltage potentials.
- Results in some (or all) of the current bypassing the intended load.
- Currents are typically very high due to low "fault impedance"

Types of Faults (and how they happen)

Basic Types of Faults in Power Systems

- Line-to-Ground (Most Common)
 - One or more conductors make "electrical" contact to ground
 - Example: Wildlife or Lightning. A lightning strike hits a line, then causes a flashover. The stroke between the line and ground causes ionization of the air (a conductive channel path to ground).

Lightning can reach 100 million to 1 billion volts, and generate up to a billion watts of power

Types of Faults (cont.)

Basic Types of Faults in Power Systems

- Line-to-Line
 - Two different phases come into direct or indirect contact with each other
 - Example: A bird with a large wingspan touches two conductors simultaneously and creates a conductive path between the two lines

Types of Faults (cont.)

Basic Types of Faults in Power Systems

- Double Line-to-ground
- Three Phase (least common)
 - Similar to Line-to-Line but when all three phases make contact with each other
 - Example: A falling tree on a transmission line creates a conductive path between all 3 lines and to ground

Designing For Short Circuit

Section 7 of IEEE C57.12.00 addresses design requirements for short circuit

- Fault current magnitudes and their behavior over time (time durations, wave shapes, etc).
- Temperature limits of winding conductor after a fault
- Power system impedance that may be used to help limit fault current
- Short circuit test methods and how to analyze, inspect, etc.

Example of How to Calculate SC Current

C57.12.00 Section 7 defines both symmetrical and asymmetrical current

Symmetrical Current

$$I_{SC} = \frac{I_R}{Z_T + Z_S}$$

- Isc symmetrical SC Current (A, rms)
- Ir rated current (A, rms)
- Zt transformer impedance for same voltage tap and MVA as rated current (Ir)
- Zs system impedance in per unit on the same MVA base for rated current (Ir)

Asymmetrical Current

$$I_{SC}(pk asym) = K I_{SC}$$

$$K = \left\{ 1 + \left[e^{-\left(\phi + \frac{\pi}{2}\right)\frac{r}{x}} \right] \sin \phi \right\} \sqrt{2}$$

- ϕ is arc tan (*x*/*r*) (radians)
- *e* is the base of natural logarithm
- x/r is the ratio of effective ac reactance to resistance, both in ohms

Waveform of Typical Fault Current Over Time

Different Parts of the Formulas...

Part 4 – Visualization of the Magnetic Forces:

- Axial Forces on Winding Conductors (and other components)
- Radial Forces on Winding Conductors
- Combination of Axial/Radial Forces

Back to our Fault Condition...

System Fault

- An un-intended "electrical connection" made between two energized components having different voltage potentials.
- Results in some (or all) of the current bypassing the intended load.
- Currents are typically very high due to low "fault impedance"

Once the Fault Occurs...

- The transformer must source the current to feed the fault
- Very high currents (much higher than rated current) begin to flow in the transformer windings
- Very high <u>temperatures</u> can be generated in the winding conductors and paper insulation resulting from the high currents that flow.
- Very high <u>magnetic forces</u> can be generated within windings, leads, supporting structures and insulation systems.

Short circuit forces are all acting in 3-D (combination of axial/radial/angular).

They can reach summative levels of up to 2+ million lbs, per phase, INSTANTANEOUSLY!

Physics of Materials: Static vs Dynamic Stress

We know that: All materials behave differently under static (stationary) versus dynamic (moving) load conditions

Example using a weight suspended from a 10 lb test fishing line

Visualization of Magnetic Fields and Forces

INDICATES FORCE DIRECTION Mag field "leaks" out radially whenever there is an axial spreading out of turns in a coil. The larger the axial spread of turns, the more radial the field becomes

Finite Element Analysis of Leakage Flux Between Coils

Axial locations of where HV DETC taps are located

Axial Forces - (Applying Left Hand Rule)

Beam Bending Under Load (elevation view)

Beam Bending Stress

Conductor Tipping/Tilting

Stress in Tie Bars (Verticals)

The minimum cross-sectional area of the tie bar (Atb) is determined by the force applied and the yield point of the tie bar material.

> Yield Strength of Tie Bar = 100,000 PSI

$$A_{tb} = \frac{Fm/2}{70,000}$$

70% of yield = 70,000 PSI

Fm/2 to get minimum area per tie bar (2 per phase)

Fm is the larger of:

- maximum axial short circuit force (PSI)
- maximum winding sizing per phase (PSI)

Fm

Fm

(Inward) Radial Forces – Buckling (inner coil) waukesha

B

Buckling Photo - Inner Winding Forced Into Failure in a Laboratory Setting...

OUTWARD Radial Forces – Hoop Stress (outer coil)

April 25th, 2019

Outward Forces (hoop stress) - Outward Radial Force exerts Tensile Stress only

waukesha

Winding Temperature During a Short Circuit

- Calculated on basis that all heat is stored (heats up too quickly to radiate heat to equilibrium)
- Temperature not to exceed
 - 250°C for copper
 - 200°C for EC grade aluminum
- Method defined on IEEE C57.12.00-2000 section 7.4.

Winding Temperature During a Short Circuit

Approximate method:

$$Tf = \frac{(S_{\Delta k})^2 t}{K_m} + T_{OR} + T_a$$

Tf = final winding temperature at end of a short circuit (°C) T_{OR} = maximum top liquid temperature rise over ambient temperature (°C) T_a = ambient temperature (°C) $S_{\Delta k}$ = winding current density at symmetrical short circuit current (W/dm²) t = short circuit duration (s). K_m = 156 for copper / 73 for EC grade aluminum

Part 5 – Calculation Example:

Calculate short circuit current and asymmetrical offset factor

Back to our formulas again....

Assume we have a transformer with a 69kV primary and the following known data: Transformer MVA = 30 MVA base Rated amps on LV (@ 30 MVA) = 1000 amps Tested load loss @ 30 MVA: 72.0 kw Tested impedance @ 30 MVA: 8.0% (= 0.8 p.u.)

To find I_{sc} (RMS symmetrical) and I_{sc} (Peak Asym), we must perform 3 steps in the following order:

- 1. Determine Isc (RMS symmetrical)
- 2. Determine offset (asymetrical) "K" factor)
- 3. Apply derived data from 1. and 2. to determine peak offset asymetrical amps.

STEP 1: Find I_{sc}(RMS symmetrical)

Note: Z_T and Z_s are in p.u.

$$I_{SC} = \frac{I_R}{Z_T + Z_S}$$
$$I_{SC} = \frac{1000}{0.08 + 0} = 12,500A$$

OR, using the other forumla ...

$$I_{SC} = \frac{100}{8\% + 0\%} \times \mathbf{I}_{rated}$$

$$I_{SC} = \frac{100}{8\% + 0\%} \times 1000A = 12,500A$$

Symmetrical Current without Zs

Symmetrical Current with Zs

$$I_{SC} = \frac{I_R}{Z_T + Z_S}$$

$$I_{SC} = \frac{1000}{0.08 + Z_S}$$

$$Z_S = \frac{MVA_T}{MVA_S} = \frac{30}{9800} = 0.31\%$$
1000

$$I_{SC} = \frac{1000}{0.08 + 0.0031} = 12,034 \, A$$

Note: Zs is derived from C57.12.00-2010 Table 15 if not specified from customer.

Difference (with vs without Zs) is almost 500A or 4%

Next

Step 2: Determine the "K" factor:

To find "K" factor, we need to determine %R and X/R ratio...

$$K = \left\{ 1 + \left[e^{-\left(\phi + \frac{\pi}{2}\right)\frac{r}{x}} \right] \sin \phi \right\} \sqrt{2}$$

1. Find %R %R = $100x \frac{Load \ Loss \ (kW)}{KVA_T} = \frac{100x72}{30,000} = 0.24\%$ 2. Find X/R $\frac{X}{R} = \frac{Z_T}{\%R} = \frac{8\%}{0.24\%} = 33.33$

Plug these values into next equation

Step 2 (continued): Determine the "K" factor:

$$K = \left\{ 1 + \left[e^{-\left(\phi + \frac{\pi}{2}\right)\frac{r}{x}} \right] \sin \phi \right\} \sqrt{2}$$
$$K = \left\{ 1 + \left[e^{-\left(\tan^{-1}(33.33) + \frac{\pi}{2}\right) * \frac{1}{33.33}} \right] * \sin(\tan^{-1}(33.33)) \right\} * \sqrt{2}$$

K = 2.702

C57.12.00-2010 Table 14

<i>x</i> / <i>r</i>	K
1000.00	2.824
500.00	2.820
333.00	2.815
250.00	2.811
200.00	2.806
167.00	2.802
143.00	2.798
125.00	2.793
111.00	2.789
100.00	2.785
50.00	2.743
33.30	2.702

Step 3: Determine the I_{sc}(Peak Asymmetrical):

Since Isc(peak asym) = K x Isc (RMS symmetrical)

then ...

 $I_{sc}(peak \ asym) = 2.702 \ x \ 12,500 \ amps = 33,750 \ amps$

FYI: Since F \propto I² The Txf forces will see (33750 amps / 1000 amps)² = (33.75)² = 1140 x normal forces

Questions

Contact

Michael Liesch Senior Electrical Design Engineer

T: 262-446-8426 M: 262-909-6479

Michael.Liesch@prolec.energy

Prolec-GE Waukesha, Inc. 400 S. Prairie Ave. Waukesha, WI 53186

www.waukeshatransformers.com