Transformer Factory Testing

Transformer Concepts & Applications Seminar Goldsboro, NC September 19-21, 2023

© Prolec-GE Waukesha, Inc.

Reasons for Testing

Compliance Assessment with user of quality and specifications reliability Compliance Verification of with design applicable calculations industry standards

September 18, 2024 2

IEEE C57.12.00-2021 Table 17

Routine Tests

• Routine tests shall be made on every transformer to verify that the product meets the design specifications

Design Tests

- Design tests shall be made to determine the adequacy of the design of a particular type, style, or model of transformer or its component parts.
- Test data from previous similar designs may be used for current designs, where appropriate.
- Once made, the tests need not be repeated unless the design is changed to modify performance.

Other Tests

• Other tests are identified in product specifications and may be specified by the purchaser in addition to routine tests

September 18, 2024 3

IEEE C57.12.00-2021 Sec 5.10

	Nominal System Voltage (kV)	Top Nameplate Rating (KVA)
Class I	< 69 kV = 69 kV	Any <10,000 – 1φ <15,000 – 3φ
Class II	≥115 kV ≥69 kV < 115kV	Any ≥10,000 − 1φ ≥15,000 − 3φ

September 18, 2024 4

Preliminary Testing

Preliminary Testing

Preliminary Tests

Voltage Ratio Test

- Performed with ratio-meter (TTR) based on voltage comparison principle to check that windings are wound with correct turns including tapped turns
- Low voltage is applied to HV winding and voltage measured across LV/other winding is fed back to ratiometer which displays the applied/measured voltage ratio (= turns ratio)
- Turns ratio is compared with voltage ratio requirement to meet tolerance of +/- 0.5%
- **CT** Ratio and Polarity Test
 - Verify Polarity (& also Ratio) and wiring to control box

Leak Test

- 10 PSI for 10 hours minimum
- Typically Tested during Manufacturing before release to Test

Ta	ıps	NAME		PHASE	
цv	τv	PLATE	H ₁ -H ₂	H ₂ -H ₃	H ₃ -H ₁
п	LV		X0-X2	X0-X3	X0-X1
1	-	6.812	6.820	6.819	6.819
2	-	6.650	6.654	6.655	6.655
3	-	6.488	6.491	6.491	6.492
4	-	6.326	6.331	6.331	6.331
5	-	6.164	6.167	6.168	6.168

Preliminary Tests (cont.)

Insulation Power Factor C57.12.90 Sec. 10.10

- Test voltage is typically 10kV
- Power Factor is affected by temperature; Recommended 10⁰ to 40⁰ C
- No IEEE Limit for PF, Max 0.5% good for most units

Connection	Test W	mΛ	Watte	Power	Factor	Can (nF)	
Connection	ICSUKV	ШA	watts	Tested	@ 20°C	Cap (pr)	
CH+CHL	10	25.446	0.371	0.15	0.14	6750	
СН	10	9.830	0.216	0.22	0.21	2608	
CHL(UST)	10	15.601	0.128	0.08	0.08	4138	
CHL	0	15.616	0.155	0.10	0.09	4142	
CL+CHL	10	49.653	1.603	0.32	0.31	13171	
CL	10	34.047	1.437	0.42	0.40	9031	
CHL(UST)	10	15.593	0.142	0.09	0.09	4136	
CHL	0	15.607	0.166	0.11	0.10	4140	

Excitation Current & Loss [M4100 Serial: 122033265]

											Ма	anufactur	er ·	Туре	Steps	Rated k V	Ste	pkV St	ep% Oil	Volume	9	
										DETC-	1				5	1 38.00	5 .4	450 📍 2.	.500	*		
Report Source	Two	-winding Transform	er							OLTC-	1				33	13.20	0.0	0 🍢 83	.625	*		karha
Session Test Dat	te 9/3/2	024 10:41:53 PM											H1 H3			H2 H1			H3 H2			
Nameplate - Two	o-windina	Transformer											Watta	v		112 111 Motto	v		110 112	v		a proiec ge company
Company	C	NCOR		Serial Numb	er	G	T-07133				ap Testki			<u>^</u>			^			<u>^</u>		
Location				Special ID		51	75389			HV:3 LV:1	6R 10	7.040	39.880	L	3.854	19.909	L	1.708	41.461	L	Good	
Division				Circuit Desig	gnation					HV: 3 LV: 1	5R 10	6.855	38.821	L	3.769	19.380	L	7.472	40.238	L	Good	
Manufacturer				Configuratio	- on	D	Y			HV: 3 LV: 1	4R 10	6.682	37.794	L	3.689	18.853	L	7.248	39.067	L	Good	
Year Manufactured	2	024		Tank Type		N2	2 Blanket			HV: 3 LV: 1	3R 📕 10	6.527	36.803	L	3.608	18.401	L	7.025	37.986	L	Good	
Mfr Location				Coolant		Oi	I				2R 10	6 370	35 030	-	3 535	17 963	-	6.825	36.952	-	Good	
Phases	Т	hree		Class		10	VAN/ONAF/	/ONAF				0.073	00.000		0.000	17.505		0.020	00.002		Cood	
Oil Volume	*			BIL		55	60 kV			HV:3 LV:1		0.242	35.125	L	3.405	17.555	L	0.034	36.007	L	Good	
Weight	*									HV: 3 LV: 1	OR <u></u> 10	6.117	34.386	L	3.401	17.185	L	6.461	35.154	L	Good	
kV	1	38, 13.2		VA Rating		28	8, 37.3, 46.7	7, *, MVA		HV: 3 LV: 9	R 10	6.000	33.710	L	3.340	16.860	L	6.300	34.362	L	Good	
										HV: 3 LV: 8	R 10	5.894	33.099	L	3.296	16.509	L	6.156	33.647	L	Good	
Administration											'R 📕 10	5 794	32 588	I.	3 247	16 243	1	6 026	33 018	I.	Good	
Test Date	9/3/2024	Test Time:		10:41 PM		Weather		Indoors			R 10	5 710	7 32 112	-	3 18/	15 95 /	-	5 803	32 476	-	Good	
Air Temperature	20°C	Apparatus	2	23.9°C		Humidity		*				5.710	04 700		0.140	15.354		5.095	52.470		Good	
Tester	SMB	Work Orde	r			Date Last	Tested			HV:3 LV:5	R 10	5.634	31.703	L	3.146	15.749	L	5.794	32.038	L	Good	
Verified	9/3/2024	Test Set Ty	/pe			Date Retes	sted			HV: 3 LV: 4	R 10	5.571	_ 31.360	L	3.114	_ 15.591	L	5.710	_ 31.667	L	Good	
Verification Date		Set Top Se	rial #			Reason				HV: 3 LV: 3	R 10	5.519	31.086	L	3.086	15.453	L	5.642	31.351	L	Good	
Last Sheet #		Test Set M	odel			Travel Tim	ne			HV: 3 LV: 2	R 10	5.479	30.885	L	3.063	15.335	L	5.591	31.141	L	Good	
Purchase Order		Ins. Book #				Duration					R 📕 10	5 451	30 755	I.	3 044	15 239	1	5 557	30 993	I.	Good	
Copies		Sheet #				Crew Size	•				I 7 10	5 /8/	30 858	-	3 053	15 270	-	5 577	31 116	-	Good	
												5.404	50.000		3.000	15.270	L .	5.577	51.110		Good	
Bushing Namep	late									HV:3 LV:2	L 10	5.511	30.983	L	3.065	15.327	L	5.604	31.231	L	Good	
Designation	Serial #	Manufacturer	Type	C1 %PF	C1 Cap	C2 %PF	C2 Cap	Rated kV	Amps	HV: 3 LV: 3	SL 10	5.552	31.179	L	3.087	15.418	L	5.653	31.435	L	Good	
H1 2	24-243931	PCORE Electric Co.	POC	0.31	426	0.26	3647	138	800	HV: 3 LV: 4	L 10	5.605	31.454	L	3.111	15.554	L	5.716	31.752	L	Good	
H2 2	24-243947	PCORE Electric Co.	POC	0.3	424	0.26	3621	138	800	HV: 3 LV: 5	6L 📕 10	5.667	31.793	L	3.141	15.726	L	5.794	32.124	L	Good	
H3 2	24-243937	PCORE Electric Co.	POC	0.31	424	0.26	3664	138	800	HV.3 IV.6	5I - 1 0	5 740	32 189	1	3 176	15 928	1	5 887	32 560	I.	Good	
X0 2	24-240052	PCORE Electric Co.	POC	0.23	402	*	*	34.5	1200		1 10	5 826	32 665	-	3 217	16 172	-	5 006	33 084	-	Good	
X1 2	24-241699	PCORE Electric Co.	POC	0.23	571	*	*	34.5	3000			5.020	52.005		0.000	10.172		0.550	55.004		Guu	
X2 2	24-241712	PCORE Electric Co.	POC	0.22	565	*	*	34.5	3000	HV:3 LV:8	L 10	5.923	33.201	L	3.262	16.435	L	6.119	33.687	L	Good	
X3 2	24-241708	PCORE Electric Co.	POC	0.22	567	*	*	34.5	3000	HV: 3 LV: 9	L 10	6.028	33.819	L	3.312	16.733	L	6.254	34.386	L	Good	
										HV: 3 LV: 1	OL 10	6.145	34.485	L	3.368	17.056	L	6.404	35.158	L	Good	
Overall Tests [M	4100 Seria	al: 122033265]								HV: 3 LV: 1	1L 📕 10	6.272	35.233	L	3.427	17.434	L	6.565	35.991	L	Good	
		Insulation V	I	Loss PF*1	CF T	CF Cap	(pF) Ff	RANK™		HV: 3 LV: 1	2L 📕 10	6.408	36.030	L	3,492	17.822	L	6.736	36.896	L	Good	
1		CH+CHL 10.001	29.060	0.490 0.1	65 🔽 0.9	981 7 708	3.800				31 7 10	6 556	7 36 000	-	3 561	18 254	-	6 920	37 876	-	Good	
2		CH 10.001	9.931	0.257 0.2	54 📕 0.9	981 2634	4.055	Good		11V. 3 LV. 1		0.000	07.040		0.001	10.234		7.440	57.070		Good	
3		CHL 10.000	19.118 📕	0.241 0.1	24 🔽 0.9	981 5071	1.625	Good		HV:3 LV:1	4L 10	6.713	37.846	L	3.033	18.720	L	7.119	38.959	L	Good	
4		CHL *	19.130 📕	0.232 0.1	19 🔽 0.9	981 5074	4.745	Good		HV: 3 LV: 1	5L 1 0	6.880	38.856	L	3.708	19.207	L	7.325	40.082	L	Good	
5		CL+CHL 10.000	83.418	1.431 0.1	68 📕 0.9	981 「 221	28.5			HV: 3 LV: 1	6L 📕 10	7.049	39.925	L	3.787	19.721	L	7.540	41.297	L	Good	
6		CL 10.001	64.301 📕	1.200 0.1	83 👖 0.9	981 1705	6.801	Good		HV: 1 LV:	N 📕 10	5.011	27.975	L	2.820	13.925	L	5.107	28.182	L	Good	
7		CHL 10.000	19.115 🏼	0.243 0.1	25 0.9	981 5070	0.440	Good		HV:2 LV	N 📕 10	5.219	29.315	L	2.921	4.503	L	5.329	29.541	L	Good	
8		CHL *	19.117	0.231 0.1	18 0.9	981 5071	1.699	Good		HV 3 IV	N 📕 10	5 455	30 780	-	3 047	15 347	-	5 525	30 924	-	Good	
Winding without At	ttached Bus	hing Calculation	_	_	_	_					N 7 10	5 600	Pag 370		2 465	I 16 044		5 760	DO.02+	-	Cood	
CH-C1		CH	9.931	0.257 0.2	54 0.9	981 2634	4.055			HV:4 LV:		0.690	32.379	L .	3.105	10.044	L .	5./03	32.487	L	Guud	
CL-C1		CL'	64.301	1.200 0.1	83 0.9	981 1705	6.801			HV: 5 LV:	N 10	5.934	34.059	L	3.295	16.870	L	6.042	34.214	L	Good	

Preliminary Tests (cont.)

Single Phase Excitation Test

- Test typically performed on HV terminal and tested at 10kV
- Test is performed **1ø** at a time and **currents** are compared
- For three phase transformers, two phases are expected to have similar and higher current compared to third.
 - Current measured on phase wound on center limb on three-legged core will have lower current due to lower magnetic reluctance
- Must de-magnetize core prior to test.

Winding Insulation Resistance C57.12.90 Sec. 10.11

- Typically tested at 1, 2.5, or 5 kV and held for 1 minute before taking reading
- Test performed high voltage to low voltage and ground and low voltage to high voltage and ground
- Acceptable values varies with design, voltage class and cooling medium typically is greater than 500MOhms

Tap P	osition	I (mA)						
DETC	LTC	Phase B	Phase C	Phase A				
1	N	3.5	8.9	9.0				
2	N	3.7	9.3	9.4				
3	N	3.9	9.6	9.7				
4	N	3.9	9.9	10.1				
5	N	4.1	10.3	10.5				
3	16R	3.9	9.6	9.7				
3	15R	24.2	29.3	29.3				
3	14R	3.9	9.5	9.7				
3	13R	86.5	91.8	91.4				
3	12R	3.9	9.5	9.7				
3	11R	24.1	29.3	29.3				
3	10R	3.9	9.5	9.7				
3	9R	24.1	29.2	29.3				
3	8R	3.9	9.5	9.7				
3	7R	24.1	29.2	29.3				
3	6R	3.9	9.5	9.7				
3	5R	86.4	91.8	91.4				
3	4R	3.9	9.5	9.7				
3	3R	24.1	29.3	29.3				
3	2R	3.9	9.5	9.7				
3	1R	24.1	29.2	29.3				

Connection	Megger (MΩ) @ 2.5 kV
connection	1 min
(HV + XV + YV) - GRND	10520
HV - (XV + YV + GRND)	22500
XV - (HV + YV + GRND)	13950
YV - (HV + XV + GRND)	16570

Performance Tests

Performance Characteristic Tests

Nameplate waukerha \odot LOAD TAP CHANGING \odot PROLEC-GE WAUKESHA, INC. GOLDSBORO, NORTH CAROLINA, USA POWER TRANSFORMER CLASS ONAN/ONAF/ONAF 3-PHASE 60 HZ SER, NO. но (•) MVA CONT, TEMP, RISE 65°C 10.00/12.50/14.00 ۲ ᡝ ΗV 115000Y/66395 VOLTS BIL 450 K۷ HV NEUTRAL BIL 450 K۷ IV 13090Y/7560 VOLTS BIL K٧ 110 LV NEUTRAL BIL 110 KV 13090 DELTA @ 3,50/4,38/4,90 MVA TV BIL 110 K۷ TV: BURIED FOR HARMONIC SUPPRESSION ONLY IMPEDANCE WITH HV SWITCH IN POSITION A — • X % AT 115000 - 13090 VOLTS AND 10.00 MVA IMPEDANCE WITH HV SWITCH IN POSITION B X AT 115000 - 13090 VOLTS AND 10.00 MVA WARNING —X2 -X3 DE-ENERGIZE TRANSFORMER APPROXIMATE WEIGHTS LBS. 34160 BUSHING CURRENT TRANSFORMER -X4 BEFORE CHANGING HV TAPS CORE & COIL (UNTANKING WEIGHT) MULTI-RATIO RELAYING ACCURACY CLASS C800 HIGH VOLTAGE TAPCHANGER TANK, FITTINGS, & RADIATORS 30070 CT:A,B,C DE-ENERGIZED OPERATION RADIATORS (TOTAL) 4680 LBS. THERMAL RATING FACTOR = 2.0 VOLTS AMPS AT POS CONNECTS 4160 GALS. DIL-MAIN TANK CURRENT TAP CURRENT TAP OIL-TAPCHANGER RATIO COMPARTMENT 268 GALS 120750 66,9 21-22 50:5 X2-X3 300:5 X2-X4 OIL-RADIATORS 190 GALS 100:5 XI-X2 400:5 XI-X4 150:5 XI-X3 450:5 X3-X5 117875 2 22-23 DIL-TOTAL 68.6 34640 25 21 22 26 4 24 11 • 4618 GALS. TOTAL WEIGHT 98870 ••••)Y 2 115000 70.3 3 23-24 200:5 X4-X5 500:5 X2-X5 SHIPPING WEIGHTS WITHOUT OIL WITH OIL 250:5 X3-X4 600:5 XI-X5 TRANSFORMER WINDINGS ARE COPPER 112125 72.1 4 24-25 SHIPPING UNIT 56860 91935 - I GND (mmm) BUSHING CURRENT TRANSFORMER 6935 CORE GROUND 109250 74.0 5 25-26 SHIPPING PARTS 6935 Ð۲۱ MULTI-RATIO RELAYING BUSHING SHIPPING TOTAL 63795 98870 ACCURACY CLASS C800 FOR STEP DOWN OPERATION CT:D,E,F,P,Q,R THERMAL RATING FACTOR = 2.0 PHASE SHIFT DE-ENERGIZED SWITCH CURRENT TAP CURRENT TAP RATIO POSITION CONNECTS 100:5 X2-X3 600:5 X2-X4 ۵ 18 IS I 200:5 XI-X2 800:5 XI-X4 300:5 XI-X3 900:5 X3-X5 O DEGREE PHASE RELATION - 24 6.50 400:5 X4-X5 1000:5 X2-X5 500:5 X3-X4 |200:5 XI-X5 POSITION CONNECTS ๎฿ BUSHING CURRENT TRANSFORMER MULTI-RATIO RELAYING 180 DEGREE ACCURACY CLASS C800 PHASE RELATION CT:G,H,J,K,L,M THERMAL RATING FACTOR = 2.0 TAPS AMPS 0 TAPS AMPS @ LTC LOW LTC LOW CONN VOLTAGE POS PAPIR MVA CONN 14.00 CURRENT TAP CURRENT 14.00 TAP VOLTAGE POS RATIO P4 PI R MVA 300:5 X3-X4 1200:5 X1-X3 11780 16L 4 4 A 617 13090 N M M B 617 400:5 XI-X2 1500:5 XI-X4 -X3 15L 5 4 A 617 13170 IR 4 M B 614 11860 500:5 X4-X5 1600:5 X2-X5 14L 5 5 A 617 2R 4 4 B 610 11940 13250 800:5 X2-X3 2000:5 X1-X5 12030 13L 6 5 A 617 13340 3R 5 4 B 606 1100:5 X2-X4 ۲ ۲ 4R 5 5 B 602 12110 12L 6 6 A 617 13420 SR 6 5 B 599 OIL LEVEL BELOW TOP SURFACE OF THE HIGHEST 6R 6 6 5 595 OIL LEVEL BELOW TOP SURFACE OF THE HIGHEST 7R 7 6 B 592 IS II.9 INCHES. TYPE OF INSULATING LIQUID: MINERAL OIL X2 X3 IIL 7 6 A 617 IOL 7 7 A 617 ΧI 12190 13500 X 0 12270 13580 BUSHING CURRENT TRANSFORMER 12350 9L 8 7 A 617 13660 MULTI-RATIO RELAYING BL B A G17 1340 BR 7 7 B 580 G11 LEVEL CHANGES 0.71 INCHES PER 10°C 7L 9 8 A 617 13830 9R 8 7 B 586 G1L LEVEL CHANGES 0.71 INCHES PER 10°C 7L 9 8 A 617 13830 9R 8 7 B 585 CHANGE IN OIL TEMPERATURE. 6L 9 9 A 617 13900 10 R 8 B 581 CONTAINS NO DETECTABLE LEVEL OF PCB 5L 10 A 617 13900 10 R 0 R CONTAINS NO DETECTABLE LEVEL OF PCB BUSHING CURRENT TRANSFORMER SINGLE RATIO RELATING CT:WI FOR WINDING TEMP EQUIP. CT:W2 FOR WINDING TEMP EQUIP. ACCURACY CLASS C400 12440 12520 THERMAL RATING FACTOR = 2.0 DIES: W HEITTAL TEMMINA WIET RE DIECT V COMMITE WO GROUND, GR IF LEFT UBGGONNECH, WURT DE PROTECTED B ALBUSCHEOMRECHTO TO A FROPERLY THE LY WEITRAL TEMMINA HUBGONNECH, WHAT DE PROTECTED BY DIECT COMECTION TO A PROPERLY MITED SUMCE AMERITER 12600 CURRENT TAP CURRENT RATIO 12680 5L 10 9 A 617 13910 IN B B STA 12680 5L 10 9 A 617 13990 11R 9 B B TA C TA < CLASS CI00 TAP RATIO 100:5 X2-X3 600:5 X2-X4 200:5 XI-X2 800:5 XI-X4 300:5 XI-X3 900:5 X3-X5 400:5 X4-X5 1000:5 X2-X5 700:5 RATIO CLASS CI00 THERMAL RATING FACTOR = 2.0 500:5 X3-X4 1200:5 X1-X5 DESIGN NO. 5171585 A517158590 REV. (1) DATE OF MANUFACTURE: \odot \odot

waukesha

No-Load Test Connection – C57.12.90 Section: 8

No Load Loss and Excitation Current

- Core Loss ~ Hysteresis Loss, Eddy Current Loss
- Hysteresis Loss ~ Flux Density & Grade of Steel
- Eddy Current Loss ~ Frequency, Temperature

Test Circuit

- Transformer is excited from either TV/LV or HV side at 60 Hz with a variable voltage sinusoidal source
- All other terminals are left open
- Applied voltage is slowly increased to test voltage 90%, 100%, 110%

Measurement

- Require high precision loss measurement system
- Losses corrected to 20°C

No-Load Test Connection

Load Loss and % Impedance

Load Loss C57.12.90 Sec. 9

- Load Losses are the losses of TRANSFORMER DUE TO LOAD CURRENT
- Load Loss = I²R loss + Eddy loss + Stray loss
- Eddy losses depend on conductor thickness and width and leakage flux distribution
- Stray loss depends on % impedance, winding dimensions and clearance to tank and clamps

Impedance

• % Impedance = VOLTAGE FOR RATED CURRENT X 100

RATED VOLTAGE

Winding Resistance Test – C57.12.90 Section: 6

- Performed with standard resistance bridge, DC current is fed to the winding and voltage developed across is measured
- Resistance = Voltage/Current is displayed and compared with design value
- Required for Load Loss calculation
- Reference for heat run winding temp rise calculation:

 $R_1 = 234.5 + T_1$ for Copper

R₂ 234.5 + T₂

1-2 = 0.6667 2-3 = 0.6667 3-1 = 0.6667 Sum = 2.0001 x 1.5 = 3

Load Loss Test Connection

• Test Circuit

Transformer is excited, preferably from HV side at 60 Hz with a variable voltage sinusoidal source. LV terminals are shorted. Applied voltage is slowly increased to feed the rated test current in the windings.

• Measurement

With the help of a precision loss measurement system load current, voltage and losses are measured:

Measured loss = I² R Loss at ambient + stray loss I² R Loss at 85°C = I² R Loss at ambient*(234.5+85)/(234.5 + ambient) Stray Loss at 85°C = Stray Loss at ambient*(234.5+ambient)/(234.5 + 85)

Load Loss Test Connection (cont.)

Load Loss Test Connection (cont.)

Dielectric Tests

Impulse Testing – C57.12.90 Section: 10.3

- Lightning Impulse Class II Routine, Class I Other
 - Reduced Wave RFW (50 70% of Full Wave)
 - Full Wave *
 - Two (2) Chopped Waves
 - Full Wave
 - Full Wave *
- Transformer Neutrals
 - 1 RFW
 - 2 FW
 - 1 FW*

*Added in 2015 Standard

Impulse Test

Lighting Impulse

- Front Time 1.2 microseconds + 30% Tolerance (1.67 Times the time between 30% and 90% voltage)
- Tail Time 50 microseconds + 20% (Time to 50% peak voltage)

Waveform Comparisons – RFW & FW Overlay

Impulse Generator (cont.)

Impulse Generator (cont.)

Multiplier Circuit

- RC circuit with circuit Inductance
- Multiplier circuit introduced by Prof. Marx
- Impulse capacitor Cs are charged in parallel and discharged in series after firing the switching gaps F
- Front Time T1 is determined by Rd whereas time to half value is determined by Re

Impulse Generator (cont.)

Series – Parallel Stages

- Stages in series for higher voltage
- Stages in parallel for higher energy

Voltage and Current Wave Shape Comparison (Reduce and Full Wave)

Failure between LTC Leads

Impulse Failure Waveforms

Switching Impulse Test

Switching Impulse Test C57.12.90 Sec. 10.2

- Time to peak value > 100 microseconds
- Time for 90 % of peak Value > 200 microseconds
- Time to first zero on tail of the wave >1000 microseconds

Test Circuit

- Test for each HV Line terminal
- Ground Neutral terminal for all Wye connection
- Ground other end of all Delta windings
- All Line terminals to be kept open except test terminal

Switching Impulse

Low Frequency Dielectric Test

Applied Voltage Test

- Transformer Connections
- Test Levels

Induced Voltage Test

- Transformer Connections
- Test Levels Class I & Class II
- Partial Discharge

Applied Voltage Test – C57.12.90 Section: 10.6

- All terminals of winding under test are shorted together and connected to the 60 Hz supply through a high voltage test transformer. All other winding terminals are shorted together and connected to ground. Tank is also connected to ground
- During this test, as both ends of winding are connected, all parts of the winding and leads attain the same voltage level with respect to ground and all other windings
- Test voltage is raised slowly to the required voltage and held for 1 minute. The test is considered to be passed if there is no collapse of voltage or no audible internal sound
- After testing one winding, connection is changed for another windings and are tested in a similar way

Induced Voltage Test vs. Applied Voltage Test

Induced Voltage

		Cu	stomer					HV	145.0	kV
		Se	erial #		GT-07133			LV	13.2	kV
		De	esign #		5175389					
	ILAC	° ти	'De		Delta/Wve			HZ	240	
	лел				550					
			nfia		Corona Test			FNHIVIL	22 9	kV
Prolec-GE Wa	ukesha Inc	To	eted By						10.7	
phone 919.734.	.8900 or 800.758.4384		Sieu by						19.7	K V
fax 919.580.325	4	Da	ite		09/04/24		Nom	. x 1.05 LV LL	13.9	κV
Cycle	Time		H1 (pC)	H1 (μV)		H2 (pC)	H2 (µV)		H3 (pC)	H3 (µV)
Ambient	0:00:00		5.1	24.0		6.3	22.0		7.8	24.0
Nom. x 1.05	0:01:31		66.3	87.0		48.4	49.0		67.0	84.0
1 Hour Level	0:07:49		25.5	34.0		20.4	24.0		26.8	32.0
Enhanced	0:00:00		24.7	33.0		19.7	27.0		25.8	31.0
1 Hour Level	0:05:00		23.5	32.0		17.2	25.0		25.8	31.0
1	0:10:00		23.4	33.0		16.1	24.0		22.7	29.0
2	0:15:00		24.5	31.0		16.9	25.0		24.0	27.0
3	0:20:00		23.8	33.0		16.6	22.0		23.7	26.0
4	0:25:00		22.5	34.0		17.1	24.0		24.6	27.0
5	0:30:00		24.5	34.0		16.3	23.0		23.7	27.0
6	0:35:00		23.0	30.0		18.9	24.0		25.1	28.0
7	0:40:00		24.7	31.0		26.9	24.0		25.9	26.0
8	0:45:00		23.5	30.0		26.3	23.0		23.3	28.0
9	0:50:00		24.5	32.0		29.9	23.0		27.8	26.0
10	0:55:00		22.5	31.0		18.3	22.0		22.7	26.0
11	1:00:00		21.8	31.0		15.8	24.0		24.1	24.0
12	1:05:00		20.6	31.0		15.1	23.0		22.0	24.0
Nom. x 1.05	1:10:00		15.3	26.0		12.0	21.0		15.5	22.0

Loss

		W	G	U	k	2	ge	
-	-					_	 9	

Normal Operating Tap KV RMS KV RMS Amps Kilo Watts JKC/RG C N 90% 6.875 6.886 0.549 10.900 C N 100% 7.641 7.650 0.772 13.897 C N 110% 8.436 8.439 1.693 18.235 C N 110% 8.946 8.919 4.669 23.179	3/2024	9/3/		ONCOR		_		9/3/2024			ONCOR			
Other Construction Official Stress Tested By: JKC/RG Description of Stress Load Loss Tested By Temp 23.9°C Tested By Temp 23.9°C Nominal DETC 0LTC Tap (NLTC=N) % KV RMS (3 ph. avg) Amps Kilo Watts (3 ph. avg) Nominal (3 ph. avg) Cost Cost Tested By: JKC/RG C N 90% 6.875 6.886 0.549 10.900 C N 100% 7.641 7.650 0.772 13.897 C N 110% 8.436 8.439 1.693 18.235 C N 117% 8.946 8.919 4.669 23.179				GT-07133	cho	nuko		51512024			CT 07122	cha		
Prode- GB Wakehas, Inc. Description 100,784,890 Description 100,784,890 Terms 23.9°C JKC/RG Nominal DETC Tap (NLTC=N) % KV RMS (3 ph. avg) Amps (3 ph. avg) Kilo Watts (3 ph. avg) Amps (3 ph. avg) Kilo Watts (3 ph. avg) Amps (3 ph. avg) Amps (3 ph. avg) Amps (3 ph. avg) Amps (3 ph. avg) Kilo Watts (3 ph. avg) Amps (3 ph. avg) Amps (3 ph. avg)	d By:	Tested		Load Loss	prolec ge company		\sim	Tested By:			GI-07133	prolec ge company	IUne	uc
Nominal DETC Tap % KV RMS (3 ph. avg) Amps (3 ph. avg) Kilo Watts (3 ph. total) C N 90% 6.875 6.886 0.549 10.900 C N 100% 7.641 7.650 0.772 13.897 C N 110% 8.436 8.439 1.693 18.235 C N 110% 8.946 8.919 4.669 23.179 A N 10.194 10.194 111.750 111.950 C N 117.900 0.9732 9.732 9.732 9.732 117.240 112.950	/RG	JKC/I		Temp 23.9°C		rsha, Inc. 200 or 800.758.4384	Prolec-GE Wauk phone 919.734.89	JKC/RG		80	Bofore Impuls		eshs, Inc. 100 or 800.758.4384	Prolec-GE Wauk phone 919.734.89
Nominal DETC Tap OLTC Tap (NLTC=N) Operating Voltage KV RMS (3 ph.avg) (3 ph. avg) Amps (3 ph.avg) Kilo Watts (3 ph. avg) DETC (3 ph. avg) OLTC Tap (NLTC=N) KV RMS (3 ph.avg) KV RMS (3 ph. avg) KI o Watts (3 ph. avg) C N 90% 6.875 6.886 0.549 10.900 A 16R 10.327 10.327 111.420 105.160 C N 100% 7.641 7.650 0.772 13.897 C 16R 9.978 9.978 117.900 109.160 C N 110% 8.436 8.439 1.693 18.235 E 16R 9.736 9.736 123.280 115.730 C N 117% 8.946 8.919 4.669 23.179 A N <td< td=""><td></td><td></td><td></td><td></td><td></td><td>into@waukesha.spx.com</td><td>Nominal</td><td></td><td>1</td><td>KV Mean</td><td>Berore imput</td><td>%</td><td>info@waukesha.spx.com</td><td>fax 919.580.3254</td></td<>						into@waukesha.spx.com	Nominal		1	KV Mean	Berore imput	%	info@waukesha.spx.com	fax 919.580.3254
Tap (NLTC=N) Voltage (3 ph.avg) avg) (3 ph. avg) (3 ph. total) Tap (NLTC=N) (3 ph.avg) (3 ph. avg) <	Vatts	Kilo W	Amps	KV Mean (3	KV RMS	OLTC Tap	DETC	Kilo Watts	Amps	(3 ph.	KV RMS	Operating	OLTC Tap	DETC
C N 90% 6.875 6.886 0.549 10.900 A 16R 10.327 10.327 111.420 105.160 C N 100% 7.641 7.650 0.772 13.897 C 16R 9.978 9.978 117.900 109.160 C N 110% 8.436 8.439 1.693 18.235 E 16R 9.736 9.736 123.280 115.730 C N 117% 8.946 8.919 4.669 23.179 A N 10.194 10.194 111.750 111.950	total)	(3 ph. t	(3 ph. avg)	ph. avg)	(3 ph.avg)	(NLTC=N)	Тар	(3 ph. total)	(3 ph. avg)	avg)	(3 ph.avg)	Voltage	(NLTC=N)	Тар
C N 90% 6.875 6.886 0.549 10.900 A 16R 10.327 10.327 111.420 105.160 C N 100% 7.641 7.650 0.772 13.897 C 16R 9.978 9.978 117.900 109.160 C N 110% 8.436 8.439 1.693 18.235 E 16R 9.978 9.978 123.280 115.730 C N 117% 8.946 8.919 4.669 23.179 A N 10.194 10.194 111.750 111.950 C N 10.194 0.732 9.732 117.240 112.950	400													
C N 100% 7.641 7.650 0.772 13.897 C 16R 9.978 9.978 117.900 109.160 C N 110% 8.436 8.439 1.693 18.235 E 16R 9.978 9.978 117.900 109.160 C N 110% 8.436 8.439 1.693 18.235 E 16R 9.978 9.978 117.900 109.160 C N 117% 8.946 8.919 4.669 23.179 A N 10.194 10.194 111.750 111.950 C N 10.194 0.732 9.732 117.240 112.950	160	105.1	111.420	10.327	10.327	16R	A	10.900	0.549	6.886	6.875	90%	N	С
C N 110% 8.436 8.439 1.693 18.235 E 16R 9.736 9.736 123.280 115.730 C N 117% 8.946 8.919 4.669 23.179 A N 10.194 10.194 111.750 111.950 C N 17% 8.946 8.919 4.669 23.179 A N 10.194 10.194 111.750 111.950	720	109.1	117.900	9.978	9.978	16R	С	13.897	0.772	7.650	7.641	100%	N	С
C N 117% 8.946 8.919 4.009 23.179 A N 10.194 10.194 111.750 111.950	050	115.7	123.280	9.736	9.736	16R	E	18.235	1.693	8.439	8.436	110%	N	С
	950	111.9	111.750	10.194	10.194		A	23.179	4.669	8.919	8.946	117%	N	C
C N 3.732 3.732 117.240 112.000	230	12.9	123 620	9.732	9.732		C							
		121.2	111 630	9.545	9.545		E							
	920	130.9	117.870	9.692	0.602	10L	A							
E 16L 9.446 9.446 123.990 137.050	050	137.0	123,990	9.032	9.092	161								
			120.000	5.440	3.440	INC	6							

Applied Voltage Test (cont.)

Test Voltage

• For Delta connected windings, applied test voltage level corresponds to NSV

For example: Equivalent applied test voltage for 230kV (750,825,900 BIL) is 345kV

For Wye connected windings, the applied test voltage is limited to the BIL of Neutral

For example:

If line end BIL is 550kV and neutral end BIL is 150kV, then equivalent applied test voltage is limited to 50kV (equivalent for 150 BIL)

Induced Voltage Test – C57.12.90 Section: 10.7 to 10.9

Test Connection

• Three phase voltage is applied to LV terminals at frequency ≥2 times rated frequency; all other line terminals are left open, Neutral and Tank is grounded

Test Voltage & Duration Class I Transformers

- Test voltage is equivalent to twice the volts/turn and line end is raised to achieve equivalent power frequency test voltage across phases
- Test duration is 7200 Hz; if test frequency is 180 Hz then test duration = 7200/180 = 40 seconds
- Test is considered to be passed if no collapse of voltage occurs or no audible internal sound is present

Induced Voltage Test (cont.)

Test Voltage & Duration Class II Transformers

- Enhancement level 173% maximum tap voltage for 7200 Hz
- One hour test voltage 150% for 1 hour
- Partial discharge limits < = 500 pC

C57.12.00 – Table 4

Maximum system voltage	Nominal system	A	pplied voltage (kV rms)	etest	Induced (phase to (kV	voltage test o ground) rms)	w	inding line (kV cre	e-end BIL est)		Neutral BIL (kV crest)			
(kV rms)	voltage (kV rms)	Delta & fully insulated wye	Grounded wye	Impedance Grounded wye or Grounded wye with Higher BIL	Enhanced 7200 cycle	One hour	Mini- mum		Alternates	5	Grounded wye	Impedance Grounded wye or Grounded wye with Higher BIL		
Col 1	Col 2	Col 3	Col 4	Col 5	Col 6	Col 7	Col 8	Col 9	Col 10	Col 11	Col 12	Col 13		
17	15	34	34	34	16	14	110				110	110		
26	25	50	34	40	26	23	150				110	125		
36	34.5	70	34	50	36	32	200				110	150		
48	46	95	34	70	48	42	200	250			110	200		
73	69	140	34	95	72	63	250	350			110	250		
121	115	173	34	95	120	105	350	450	550		110	250		
145	138	207	34	95	145	125	450	550	650		110	250		
169	161	242	34	140	170	145	550	650	750	825	110	350		
242	230	345	34	140	240	210	650	750	825	900	110	350		
362	345	518	34	140	360	315	900	1050	1175		110	350		
550	500	N/A	34	140	550	475	1425	1550	1675		110	350		
765	735	N/A	34	140	880	750	1950	2050			110	350		
800	765	N/A	24	140	885	795	1950	2050			110	350		
NOTE 1- For NOTE 2- Indu NOTE 3-Colu	NOTE 1- For nominal system voltage greater than maxim. a system voltage, a the next higher voltage class for applied test levels. NOTE 2- Induced voltage tests shall be conducted at 1.58 X nominar voltage for one hour and 1.80 X nominal voltage for enhanced 7200 cycle test. NOTE 3-Column 6 and Column 7 provide phase-to-ground test levels that would normally be applicable to wye windings. When the test voltage level is to be measured phase-to-phase (as is													
normally the o	normally the case with delta windings), the levels in Column 6 and Column 7 must be multiplied by 1.732 to obtain the required phase-to-phase induced-voltage test level.													
NOTE 4 Bold	transface BILs	are the most com	monly used star	dard lavels										

Table 4—Dielectric insulation levels for Class II power transformers, voltages in kV

NOTE 4-Bold typeface BILs are the most commonly used standard levels.

NOTE 5-Y-Y connected transformers using a common solidly grounded neutral may use neutral BIL selected in accordance with the low-voltage winding rating.

NOTE 6-For 500kV to 765 kV nominal system voltages, induced voltage test levels do not follow rules in Note 2, and 1950 kV BIL is not a standard IEEE level.

NOTE 7- For Neutral BILs greater than 350 KV, Applied Voltage test level shall be specified by user.

Temperature Distribution Model

Temperature Rise Test – C57.12.90 Section: 11

- Measurements during temperature rise test
 - Top oil temperature
 - Ambient temperatures
 - Top and bottom radiator temperature
 - Hot winding resistance at shut down
- Top Oil Rise = Top oil temperature Average ambient
- Mean oil rise = Top oil temperature Average of top & bottom header temp
- Average winding rise
 - = { (Hot Resistance/Cold Resistance) X (234.5+ambient temp) } Ambient
- Gradient = Average winding rise Mean oil rise
- Hot spot Rise = Top oil rise + Hot spot gradient
- Hot spot gradient = Gradient (1 + k); k = hot-spot factor

Average Winding Rise

$$\theta_2 = \frac{R_2}{R_1} (235 + \theta_1) - 235$$

- θ_2 : Temperature of the winding when the circuit is opened
- θ_1 : Average oil temperature at he beginning of test (cold case)
- R_2 : Resistance at temperature θ_2 (hot case)
- R_1 : Resistance at temperature θ_1 (cold case)

DGA

DGA Sequence

- Before Test , After Dielectric, Before/After Temp Rise test, After all Tests
- Gassing rate depend on many factors Winding temperature rise, Ambient Temperature, Duration of test, Design characteristics like current and flux density
- Expect significant difference lab to lab

Limits per C57.130

	Gas Generation During Temp Rise Test PPM/ Hour
Hydrogen H2	< 1
Carbon Monoxide CO	< 2
Carbon dioxide CO2	< 18
Methane CH4	
Ethane C2H6	< 0.4
Ethylene C2H4	
Acetylene C2H2	0

Sound Test – C57.12.90 Section: 13

- Core audible sound: This sound component originates in the transformer core
- **Load audible sound:** This sound component is primarily produced by vibrations of the windings and tank walls when the transformer is loaded.
 - When a transformer is highly loaded, load sound can be a significant contributor to the total sound of the transformer ,especially for low no-load noise medium and large power transformers.
- **Cooling system audible sound:** typically consists of broadband fan noise, plus discrete tones (of low levels) at the fan blade passage frequency and its harmonics.

The sum of core and cooling system sound components is typically referred to as the **no-load noise** of a transformer.

The total audible sound of the transformer, however, is the sum of all three components, 2015 standard outlines measurement methods for Load sound and calculation to arrive Total sound.

Sound levels are specified in NEMA-TR1 and that is only No-Load Sound Level

Load Sound is not significant for smaller transformers (< 100 MVA) unless No load sound required is below NEMA

Sound Test Procedure

- Measurements are generally taken on a weighted scale as per NEMA standard
- Location of measurements start at drain plug and around the transformer at approximate 3-foot intervals, 12 inches away from transformer tank/radiators as applicable at 1/3 and 2/3 heights for transformers over 9 feet
- With fans running readings are taken 6 feet distance

Other Tests

- Bushing Cap & PF C1/C2
- Core excitation test typically 110% for 24 Hours
- Leakage Reactance test
- Front of Wave Impulse testing
- Frequency response analysis (FRA)
- Fast Front Switching Impulse (FFSI)
- Special Termination Lightning Impulse (STLI)
- LTC Tests
 - Operate LTC at No Load Voltage
 - Operate LTC under Load
 - Dynamic Resistances
 - DGA from LTC

Questions?