Protec Solution Voltage Regulator Testing and Standards

Voltage regulators need to comply with strict Quality Standards:

Standard	Focus on	Applicable to
IEEE Std C57.12.80	Standard Terminology	for Power and Distribution Transformers
IEEE Std C57.12.00	Standard for General Requirements	for Liquid-Immersed Distribution, Power, and Regulating Transformers
IEEE Std C57.12.90	Standard Test Code	for Liquid-Immersed Distribution, Power, and Regulating Transformers
IEEE Std C57.15	Standard requirements, terminology, and test code	for step-voltage regulators
IEEE Std C57.131	Standard Requirements	for Tap Changers
IEEE C57.12.31	Standard	for Pole-Mounted Equipment–Enclosure Integrity
ASTM D3487	Standard Specification	for Mineral Insulating Oil used in Electrical Apparatus

+ Prolec GE Internal Quality Standards and customer specifications.

Routine Tests

Per IEEE Std C57.15 sec 6.10.2 the routine tests required are:

Preliminary	 Ratio test Resistance measurements Insulation resistance Insulation power factor test
Losses	 No-load loss (core loss) and excitation current at rated voltage and rated frequency Load loss and impedance at rated current and rated frequency Applied-voltage test
Dielectric	 Induced-voltage test Lightning impulse test
Additional	 Leak test OLTC test Control system test: applied voltage and operation

Routine tests – Preliminary tests:

Test	Description of the test	Purpose
Ratio	 Test is conducted from 16L to 16R, covering the entire series winding. Includes ratio test of instrument transformers like PT, CT and utility winding if any. Per IEEE Std C57.15 SEC 9.4.5, the tolerance for ratio is 0.5% from the design value. 	 Verify that the correct turns were wound. Verify that ratio values exist throughout each winding and are per design.
Resistance	 The test is performed at the specific taps where load losses were requested by the customer (typically 16R, 15R, 15L & 16L). 	 Resistance is measured for internal quality purposes, is not a guaranteed value. Values are used later on the load loss test to breakdown the winding and stray losses.
Insulation resistance	 Low voltage (500 to 2400 V) DC test. 	 Detects if the insulation system is in good conditions. There is no a specific target requested by any standard. High megger readings are good, new units test around 1000 MΩ at 20°C.
Insulation power factor	 All windings shall be immersed in insulating liquid. All windings short-circuited. All bushings in place. Average temperature of windings and oil between 10°C and 40°C, preferably as near to 20°C. Top liquid temperature measured and recorded. 	 Measures the capacitance and the ratio of the real power dissipated on the insulation system (W) and the apparent power consumed (VA) This is done between different components, L-G, H-G and H-L. There is no a guaranteed value or requirement on any IEEE Std. Prolec GE internal benchmark is not to test more than 1.00% for mineral oil and no more than 2.00% for natural ester.

Routine tests – Losses tests:

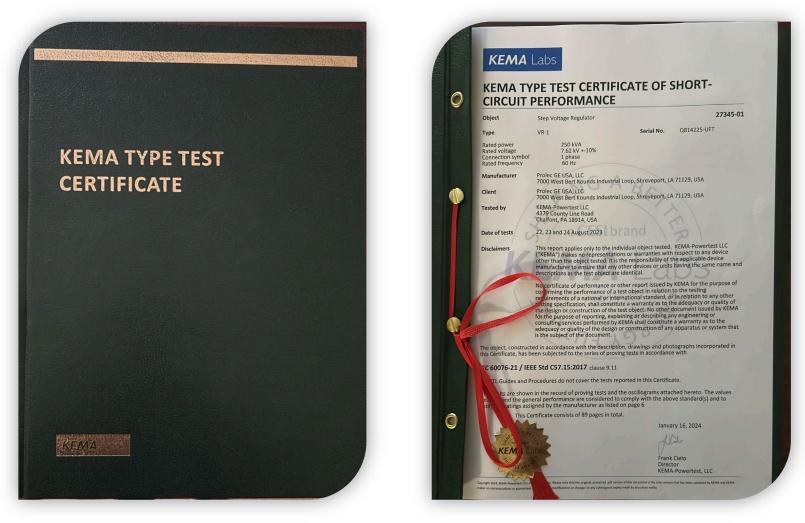
Test	Description of the test	Purpose
No-load loss (core loss) and excitation current	 The test consist of applying rated voltage and frequency on one of the windings and the other winding in open circuit. No-load losses is the average of values tested at neutral (N) and the adjacent boost position (1R). Per IEEE Std C57.12.00 no-load loss shall not exceed the design value by more than 10%. 	 Measure losses generated by the core and the excitation current required to generate the excitation.
Load loss and impedance	 Load loss: The test consist of shorting one of the windings while the other is input with voltage and adjusted to cause rated line current to flow. It can be tested as an autotransformer or as a two winding transformer. Load loss is the average of values tested at 16R, 15R, 15L and 16L. Per IEEE Std C57.12.00 total losses (NLL+LL) shall not exceed the design value by more than 6%. 	 Measure losses generated by the resistance on the windings due to load current and stray losses due to eddy currents induced by leakage flux in the windings, core clamps, magnetic shields, tank walls and other conducting parts.
	 Impedance (%Z): The input voltage that causes rated current to flow is known as "impedance voltage". The %Z is calculated based on the impedance voltage, then divide it by the rated voltage and multiply it by 100. Per IEEE C57.15 sec 9.6.4.3, a VR shall have a tolerance of ±10% of the design value. 	 In contrast with a conventional transformer, the %Z of a VR is commonly not request by the customer and the measured value is not reported on the nameplate. The maximum %Z of a VR is generally less than 0.6%.

Routine tests – Dielectric tests:

Test	Description of the test	Purpose
Applied voltage	 Low frequency test One winding is connected to a specified potential (all its parts joined together) The other winding and tank are grounded The duration of the test is 1 min. 	 Detect energized elements without proper distance against parts that are connected to ground Detect weakness in coil to ground insulation.
Induced voltage	 Low frequency test. The test is performed at 2X rated voltage. The duration shall be 7,200 cycles or 60 s whichever is less. 	 Detect tear/break insulation within the windings (Layer-to-Layer) Detect damaged and/or poor conductor insulation (Turn-to-Turn).
Lightning impulse	 High frequency test. Exciting and series windings are considered as a single winding for the purpose of this test. S&L terminals are tied together through a resistor of 450Ω to limit the induce voltage. The test is applied at S terminal for type A while set at 16L. Test is applied at L terminal for type B while set at 16R. 	 Simulates a lightning surge hitting the VR. Proves the capability of the insulation system to withstand these events.

Routine tests – Additional tests:

Test	Description of the test	Purpose
Leak	 An internal pressure of 10 psi is applied to the VR for 2 hours. 	 The purpose of the test is to check the integrity of welds and gasket seals.
OLTC	 OLTC fully assembled but without the contacts energized. Ten complete cycles (max boost to max buck and back) of operation shall be performed without failure. Auxiliary circuits shall withstand without failure an applied voltage test of 1.5kV from all live parts to ground for 1 min. 	 Validate the integrity of all OLTC components and mechanisms. Detect abnormal contact pressure causing dragging or misalignment, causing bouncing or jamming.
Control system, applied voltage and operationApplied voltage: • Control system circuitry shall withstand without failure an applied voltage test of 1.5kV from all live terminals to ground for 1 min. • The control front panel shall be totally disconnected 		Detect change in control performance


• Temperature-rise test

- Proof that design meets the temperature-rise requirement for 55°C or 65°C winding rise rating.
- Lightning impulse test
 - Demonstrate the adequacy of the insulating materials breakdown and spacing under normal conditions.
- Short-circuit test
 - 25 times the rated current to a maximum of 16 kVA.
 - Duration of 250 ms.
 - Prolec GE is capable of design and manufacture designs with 40 times short-circuit withstand.
- Sound level test
 - Proof the design meets the sound level requirement for the specific power rating specified in table 13.

Type/Design Tests

KEMA certificate for 40 times short-circuit withstand capability:

Production Testing – Type/Design tests

KEMA certificate for 40 times short-circuit withstand capability:

Video 🕨

Production Testing – Other Testing

Prolec GE acquired in 2023 a certification against seismic zones, per the latest version of the standard:

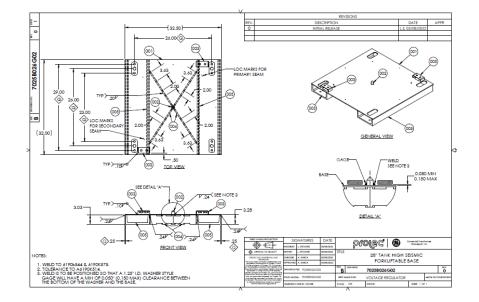
	Standard	Focus on	Applicable to
	IEEE Std 693-2018	Recommended Practice for Seismic Designs	for Substations
Previously, we held certification under the 2005 version of the standard.		REPORT NO. 1086-823 SEISMIC ANALYSIS QUALIFICATION REPORT	
However, in 2018, the requirements related to seismic zones were significantly revised.		<u>QUALIFIED ACCORDING TO:</u> <u>SEISMIC:</u> IEEE 693-2018 HIGH 0.5G ZPA <u>Voltage Regulator Product Line</u> <u>REPORT PREPARED BY:</u> W. E. Gundy & Associates, Inc.	
In response, we developed new tank bases and subbase stands that comply with the 2018 version of the standard.		DATE SIGNED OR REVISED: March 2022 EQUIPMENT MANUFACTURED BY: PROLEC GE USA THIS IS TO CERTIFY THAT THE ABOVE NAMED EQUIPMENT, MEETS THE SEISMIC ANALYSIS QUALIFICATION REQUIRMENTS ACCORDING TO THE IEEE 693-2018 STANDARD FOR HIGH SEISMIC LOADING. SIGNED:	
	s result, we are now a ertified for "High" Seism	able to offer our customers products ic Zone levels.	David E. Gundy 2023.09.13 15:00:28 -06'00'

P.O. Box 9121 Boise, ID, 83707

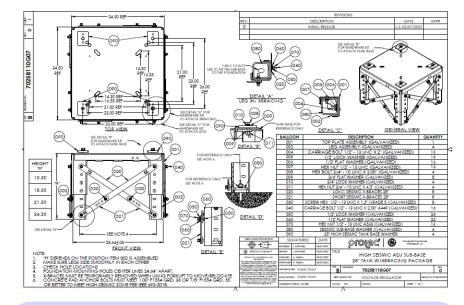
Tel (208) 342-5989

Prolec GE / Proprietary and Confidential

Email: dgundy@wegai.com


Web: www.wegai.com

Production Testings – Other Testing



High quality materials are used on the seismic designs, to withstand the loads of the high seismic zone (Including some grade 50 carbon steel components and grade 5 120 ksi fasteners).

The certification covers the next components:

Three different tank bases, for 21", 25" and 28" diameters

Two different subbase stands, for all tank diameters, and different adjustable heights.

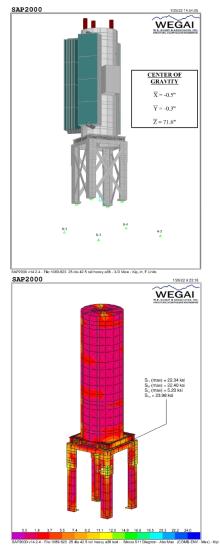


Figure C-4: S11/S22/S12 Max Shell Stress (Full Assembly A)