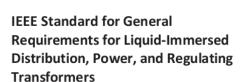


## Joshua Jordan Senior Electrical Design Engineer

Josh Jordan joined Prolec GE Waukesha in 2017 as an intern for the electrical design team in Waukesha. He has been designing medium and large power/EHV production order transformers since 2019, with ratings up to 712 MVA, 345kV class, 1175kV BIL and up to 800 MVA for quotation requests. Josh holds a Bachelor of Science Degree in Electrical Engineering from the University of Milwaukee School of Engineering.






## Reasons for Testing



- Compliance with user specifications
- Compliance with applicable industry standards
- Assessment of quality and reliability
- Verification of design calculations





IEEE Power and Energy Society

Developed by the Transformers Committee

IEEE Std C57.12.00™-2021 (Revision of IEEE Std C57.12.00-2015)

**<b>∲IEEE** 













**IEEE Standard Test Code for** Liquid-Immersed Distribution, **Power, and Regulating Transformers** 

**IEEE Power and Energy Society** 

Developed by the Transformers Committee

IEEE Std C57.12.90™-2021 (Revision of IEEE Std C57.12.90-2015)







Both these standards got released in early 2022, with revision date of 2021.

## IEEE C57.12.00-2021 Table 17



### **Routine Tests**

Routine tests shall be made on every transformer to verify that the product meets the design specifications

### **Design Tests**

Design tests shall be made to determine the adequacy of the design of a particular type, style, or model of transformer or its component parts. Test data from previous similar designs may be used for current designs, where appropriate. Once made, the tests need not be repeated unless the design is changed to modify performance.

### Other Tests

Other tests are identified in product specifications and may be specified by the purchaser in addition to routine tests

## Class I and Class II Power Transformers



|          | Nominal System Voltage (kV) | Top Nameplate<br>Rating (KVA)       |
|----------|-----------------------------|-------------------------------------|
| Class I  | < 69 kV<br>= 69 kV          | Any<br><10,000 – 1φ<br><15,000 – 3φ |
| Class II | ≥115 kV<br>≥69 kV < 115kV   | Any<br>≥10,000 − 1φ<br>≥15,000 − 3φ |



# **Preliminary Testing**

# **Preliminary Testing**



| Tests                             | Class I             | Class II            |  |
|-----------------------------------|---------------------|---------------------|--|
| Voltage Ratio                     | Routine             | Routine             |  |
| Insulation Power factor           | Routine             | Routine             |  |
| Insulation Resistance             | Routine             | Routine             |  |
| 1Ф Excitation test                | Waukesha<br>Routine | Waukesha<br>Routine |  |
| CT Ratio & Polarity               | Waukesha<br>Routine | Waukesha<br>Routine |  |
| Control Wiring Checks<br>& Hi-pot | Routine             | Routine             |  |
| Auxiliary Losses                  | Waukesha<br>Routine | Routine             |  |

# **Preliminary Tests**

### Voltage Ratio Test

- Performed with ratio-meter (TTR) based on voltage comparison principle to check that windings are wound with correct turns including tapped turns
- Low voltage is applied to HV winding and voltage measured across LV/other winding is fed back to ratio-meter which displays the applied/measured voltage ratio (= turns ratio)
- Turns ratio is compared with voltage ratio requirement to meet tolerance of +/- 0.5%

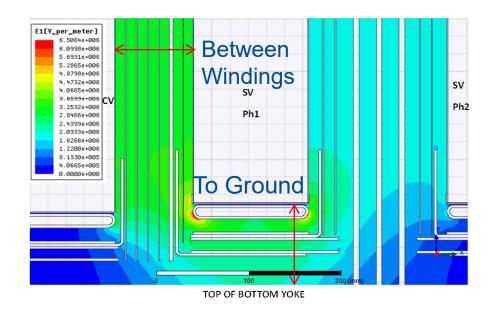
### CT Ratio and Polarity Test

Verify Polarity ( & also Ratio ) and wiring to control box

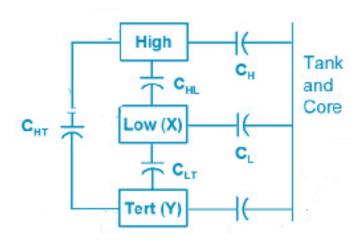
### **Leak Test**

- 10 PSI for 10 hours minimum
- Typically Tested during Manufacturing before release to Test




| Ta | ips | Namenlati | Meas    | sured Va | lues   | %Err  | From Name | eplate |
|----|-----|-----------|---------|----------|--------|-------|-----------|--------|
| HV | XV  | Nameplate | ØΑ      | ØB       | ØC     | ØΑ    | ØB        | ØC     |
| Α  | N   | 9.513     | 9.5236  | 9.5236   | 9.5233 | -0.11 | -0.11     | -0.11  |
| В  | N   | 9.284     | 9.2901  | 9.2899   | 9.2910 | -0.07 | -0.06     | -0.08  |
| С  | N   | 9.054     | 9.0581  | 9.0580   | 9.0592 | -0.05 | -0.04     | -0.06  |
| D  | N   | 8.824     | 8.8259  | 8.8263   | 8.8263 | -0.02 | -0.03     | -0.03  |
| E  | N   | 8.595     | 8.5955  | 8.5927   | 8.5927 | -0.01 | +0.03     | +0.03  |
| -  |     |           | Mana    | sured Va | Torres | 0/    | C N       | 1-4-   |
|    | ps  | Nameplate | 1000000 |          |        |       | From Nam  |        |
| HV | XV  |           | ØA      | ØB       | ØC     | ØΑ    | ØB        | ØC     |
| С  | 16R | 8.231     | 8.2384  | 8.2403   | 8.2376 | -0.09 | -0.11     | -0.08  |
| С  | 15R | 8.276     | 8.2873  | 8.2847   | 8.2873 | -0.14 | -0.11     | -0.14  |
| С  | 14R | 8.325     | 8.3349  | 8.3312   | 8.3344 | -0.12 | -0.07     | -0.11  |
| С  | 13R | 8.375     | 8.3802  | 8.3798   | 8.3804 | -0.06 | -0.06     | -0.06  |
| С  | 12R | 8.422     | 8.4286  | 8.4288   | 8.4270 | -0.08 | -0.08     | -0.06  |
| С  | 11R | 8.470     | 8.4780  | 8.4771   | 8.4758 | -0.09 | -0.08     | -0.07  |
| С  | 10R | 8.521     | 8.5278  | 8.5269   | 8.5278 | -0.08 | -0.07     | -0.08  |
| С  | 9R  | 8.570     | 8.5784  | 8.5752   | 8.5784 | -0.10 | -0.06     | -0.10  |
| С  | 8R  | 8.623     | 8.6298  | 8.6271   | 8.6292 | -0.08 | -0.05     | -0.07  |
| С  | 7R  | 8.673     | 8.6799  | 8.6786   | 8.6790 | -0.08 | -0.06     | -0.07  |
| С  | 6R  | 8.727     | 8.7331  | 8.7302   | 8.7335 | -0.07 | -0.04     | -0.07  |
| С  | 5R  | 8.778     | 8.7836  | 8.7834   | 8.7832 | -0.06 | -0.06     | -0.06  |
| С  | 4R  | 8.833     | 8.8374  | 8.8375   | 8.8373 | -0.05 | -0.05     | -0.05  |
| С  | 3R  | 8.889     | 8.8916  | 8.8914   | 8.8919 | -0.03 | -0.03     | -0.03  |
| С  | 2R  | 8.942     | 8.9467  | 8.9462   | 8.9467 | -0.05 | -0.05     | -0.05  |
| С  | 1R  | 8.996     | 9.0026  | 9.0008   | 9.0021 | -0.07 | -0.05     | -0.07  |
|    |     |           | 70      |          |        | 70    |           |        |

# Preliminary Tests (cont.)




**Insulation Power Factor** 

C57.12.90 Sec. 10.10



- Test voltage is typically 10kV
- Power Factor is affected by temperature;
   Recommended 10<sup>0</sup> to 40<sup>0</sup> C
- No IEEE Limit for PF, Max 0.5% good for most units



| #  | Connection                   | Measurement     | Cap.    | Power Fa | ctor (%) |
|----|------------------------------|-----------------|---------|----------|----------|
| ** | Connection                   | rieasul ellient | (pF)    | @ 20°C   | Tested   |
| 1  | HV - (XV + GRND), YV @ GUARD | CHX + CH        | 10135.4 | 0.26     | 0.27     |
| 2  | HV - GRND, XV & YV @ GUARD   | СН              | 2630.7  | 0.29     | 0.30     |
| 3  | HV - (YV + GRND), XV @ UST   | CHX             | 7499.3  | 0.26     | 0.27     |
| 4  | Calculated: #1 - #2          | CHX             | 7504.7  | 0.25     | 0.26     |
| 5  | XV - (YV + GRND), HV @ GUARD | CXY + CX        | 26489.6 | 0.23     | 0.23     |
| 6  | XV - GRND, YV & HV @ GUARD   | CX              | 24837.2 | 0.24     | 0.24     |
| 7  | XV - (HV + GRND), YV @ UST   | CXY             | 1643.8  | 0.18     | 0.18     |
| 8  | Calculated: #5 - #6          | CXY             | 1652.4  | 0.21     | 0.21     |
| 9  | YV - (HV + GRND), XV @ GUARD | CHY + CY        | 22722.1 | 0.21     | 0.21     |
| 10 | YV - GRND, XV & HV @ GUARD   | CY              | 12947.4 | 0.23     | 0.23     |
| 11 | YV - (XV + GRND), HV @ UST   | CHY             | 9771.2  | 0.19     | 0.19     |
| 12 | Calculated: #9 - #10         | CHY             | 9774.6  | 0.19     | 0.19     |
| 13 | (HV + XV + YV) - GRND        | CH + CX + CY    | 40426.0 | 0.23     | 0.23     |

# Preliminary Tests (cont.)

## waukerha

### Single Phase Excitation Test

- Test typically performed on HV terminal and tested at 10kV
- Test is performed one phase at a time and currents are compared
- For three phase transformers, two phases are expected to have similar and higher current compared to third; current measured on phase wound on center limb on three legged core will have lower current due to lower magnetic reluctance

### Winding Insulation Resistance C57.12.90 Sec. 10.11

- Typically tested at 1/2.5/5 kV and held for 1 minute before taking reading
- Test performed high voltage to low voltage and ground and low voltage to high voltage and ground
- Acceptable values varies with design, voltage class and cooling medium typically is greater than 500MOhms

| Тар | Positio | ons  | I (mA)  |         |         |  |  |  |
|-----|---------|------|---------|---------|---------|--|--|--|
| HV  | XV      | YV   | ØA      | ØB      | ØC      |  |  |  |
| С   | 16R     | -    | 18.732  | 12.433  | 18.876  |  |  |  |
| С   | 15R     | 5-8  | 264.762 | 256.629 | 265.700 |  |  |  |
| С   | 14R     | -    | 18.830  | 12.507  | 18.975  |  |  |  |
| С   | 13R     | 5-   | 268.214 | 259.942 | 268.943 |  |  |  |
| С   | 12R     | -    | 18.970  | 12.589  | 19.097  |  |  |  |
| С   | 11R     | 5-8  | 271.707 | 263.212 | 272.623 |  |  |  |
| С   | 10R     | -    | 19.128  | 12.697  | 19.245  |  |  |  |
| С   | 9R      | 5-   | 275.426 | 266.777 | 276.109 |  |  |  |
| С   | 8R      | -    | 19.317  | 12.819  | 19.420  |  |  |  |
| С   | 7R      | 5.78 | 278.996 | 270.322 | 279.692 |  |  |  |
| С   | 6R      | -    | 19.524  | 12.963  | 19.612  |  |  |  |
| С   | 5R      | 5-   | 282.552 | 274.121 | 283.357 |  |  |  |
| С   | 4R      | -    | 19.749  | 13.123  | 19.835  |  |  |  |
| С   | 3R      | 5-8  | 286.345 | 277.724 | 287.294 |  |  |  |
| С   | 2R      | -    | 20.004  | 13.303  | 20.086  |  |  |  |
| С   | 1R      | 5-   | 290.172 | 281.565 | 291.301 |  |  |  |
| С   | N       | 32   | 20.299  | 13.500  | 20.363  |  |  |  |

| Connection            | Megger (MΩ) @ 2.5 kV |
|-----------------------|----------------------|
| Connection            | 1 min                |
| (HV + XV + YV) - GRND | 10520                |
| HV - (XV + YV + GRND) | 22500                |
| XV - (HV + YV + GRND) | 13950                |
| YV - (HV + XV + GRND) | 16570                |



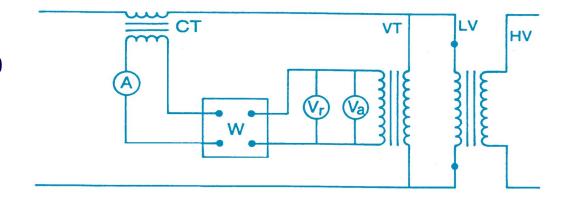
# Performance Tests

## Performance Characteristic Tests



| Tests                          | Class I | Class II |  |
|--------------------------------|---------|----------|--|
| No Load Losses                 | Routine | Routine  |  |
| % Excitation Tests             | Routine | Routine  |  |
| Load Losses                    | Routine | Routine  |  |
| Positive Sequence<br>Impedance | Routine | Routine  |  |
| Zero Sequence<br>Impedance     | Special | Routine  |  |
| Winding Resistances            | Routine | Routine  |  |
| Sound Test                     | Other   | Other    |  |

## No-Load Test Connection – C57.12.90 Section: 8




### No Load Loss and Excitation Current

- Core Loss ~ Hysteresis Loss, Eddy Current Loss
- Hysteresis Loss ~ Flux Density & Grade of Steel
- Eddy Current Loss ~ Frequency, Temperature

### **Test Circuit**

- Transformer is excited from either TV/LV or HV side at 60
   Hz with a variable voltage sinusoidal source
- All other terminals are left open
- Applied voltage is slowly increased to test voltage 90%, 100%, 110%
- Need high precision measurement System
- Losses corrected to 20°C



## Load Losses and % Impedance



### Load Loss C57.12.90 Sec. 9

- Load Losses are the losses of TRANSFORMER DUE TO LOAD CURRENT
- Load Loss = I<sup>2</sup>R loss + Eddy loss + Stray loss
- Eddy losses depend on conductor thickness and width and leakage flux distribution
- Stray loss depends on % impedance, winding dimensions and clearance to tank and clamps

### Impedance

• % Impedance = VOLTAGE FOR RATED CURRENT X 100

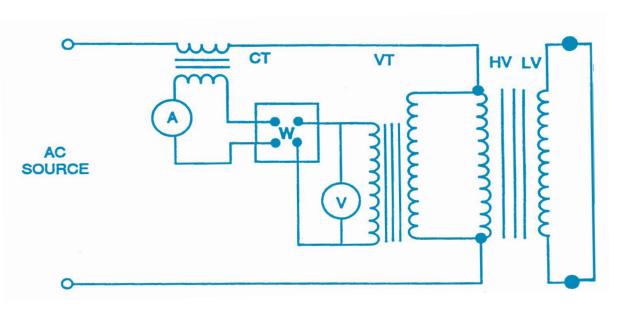
RATED VOLTAGE

## **Load Loss Test Connection**



### **Test Circuit**

Transformer is excited, preferably from HV side at 60 Hz with a variable voltage sinusoidal source. LV terminals are shorted. Applied voltage is slowly increased to feed the rated test current in the windings.


### Measurement

With the help of a precision loss measurement system load current, voltage and losses are measured:

Measured loss = I<sup>2</sup> R Loss at ambient + stray loss I<sup>2</sup> R Loss at 85°C = I<sup>2</sup> R Loss at ambient\*(234.5+85)/(234.5 + ambient) Stray Loss at 85°C = Stray Loss at ambient\*(234.5+ambient)/(234.5 + 85)

## Load Loss Test Connection (cont.)



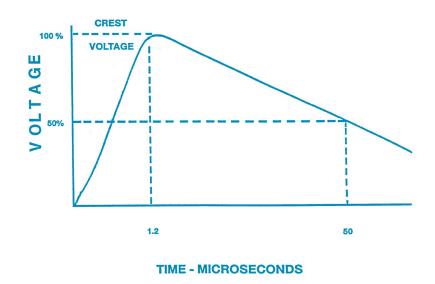


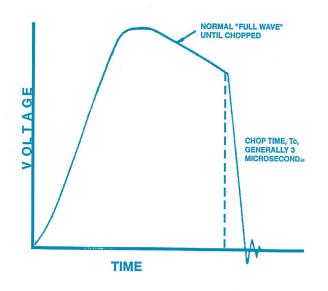


## Impulse Testing – C57.12.90 Section:10.3



- Lightning Impulse Class I Routine, Class I Other
  - Reduced Wave RFW (50 70% of Full Wave)
  - Full Wave \*
  - Two (2) Chopped Waves
  - Full Wave
  - Full Wave \*
- Transformer Neutrals
  - 1 RFW
  - 2 FW
  - 1 FW\*


<sup>\*</sup>Added in 2015 Standard


## Impulse Test



### Lighting Impulse

- Front Time 1.2 microseconds +/- 30% Tolerance (1.67 Times the time between 30% and 90% voltage)
- Tail Time 50 microseconds +/- 20% (Time to 50% peak voltage)
- Chop Time > = 3 microseconds for > = 150 KV
  - > = 2 microseconds for < 150 KV






# Waveform Comparisons – RFW & FW Overlay





**Voltage Waveform** 

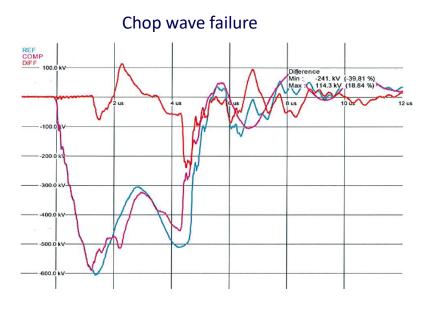


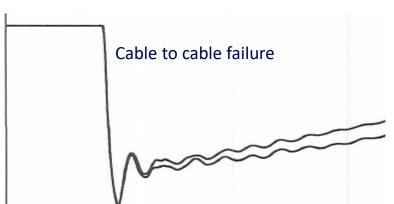
**Current Waveform** 

## Impulse Generator (cont.)

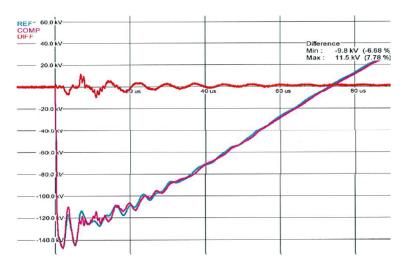


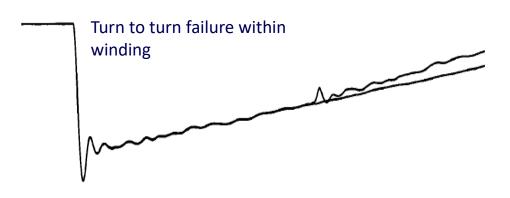






### Multiplier Circuit

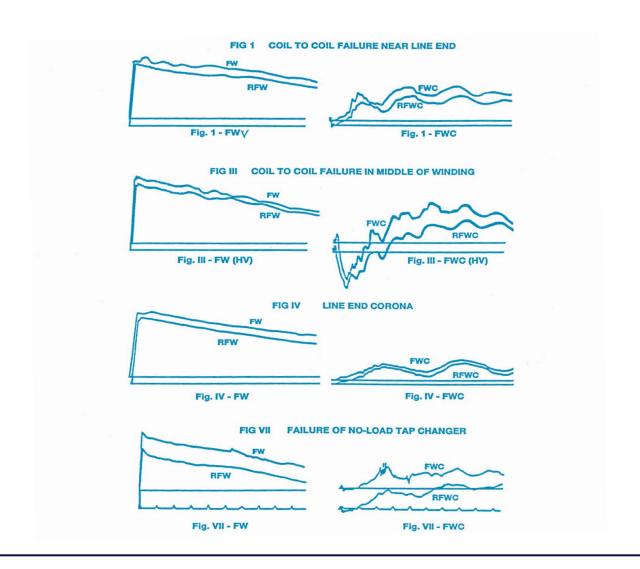
- RC circuit with circuit Inductance
- Multiplier circuit introduced by Prof. Marx
- Impulse capacitor Cs are charged in parallel and discharged in series after firing the switching gaps F
- Front Time T1 is determined by Rd whereas time to half value is determined by Re


# Voltage and Current Wave Shape Comparison (Reduce and Full Wave)









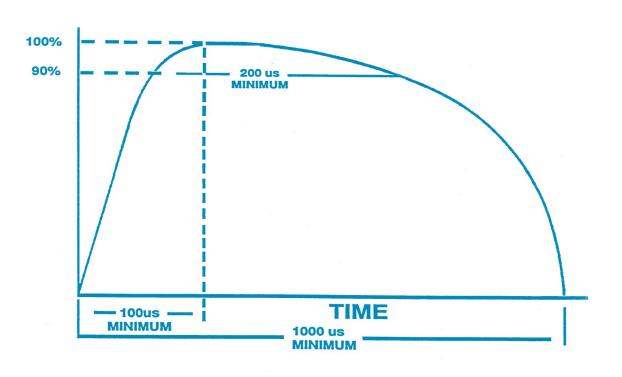



## Impulse Failure Waveforms





## Switching Impulse Test




### Switching Impulse Test C57.12.90 Sec. 10.2

- Time to peak value > 100 microseconds
- Time for 90 % of peak Value > 200 microseconds
- Time to first zero on tail of the wave >1000 microseco

### **Test Circuit**

- Test for each HV Line terminal
- Ground Neutral terminal for all Wye connection
- Ground other end of all Delta windings
- All Line terminals to be kept open except test terminal

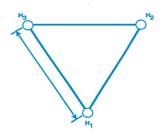


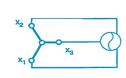
## Low Frequency Dielectric Test



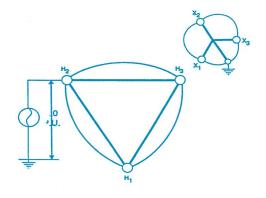
### **Applied Voltage Test**

- Transformer Connections
- Test Levels


### Induced Voltage Test


- Transformer Connections
- Test Levels Class I & Class II
- Partial Discharge

## Induced Voltage Test vs. Applied Voltage Test




A - Induced Test





### B - Applied Test



### Test Voltage

 For Delta connected windings, applied test voltage level corresponds to NSV

### For example:

Equivalent applied test voltage for 230kV (750,825,900 BIL) is 345kV

 For Wye connected windings, the applied test voltage is limited to the BIL of Neutral

### For example:

If line end BIL is 550kV and neutral end BIL is 150kV, then equivalent applied test voltage is limited to 50kV (equivalent for 150 BIL)

# Induced Voltage Test – C57.12.90 Section: 10.7 to 10.9

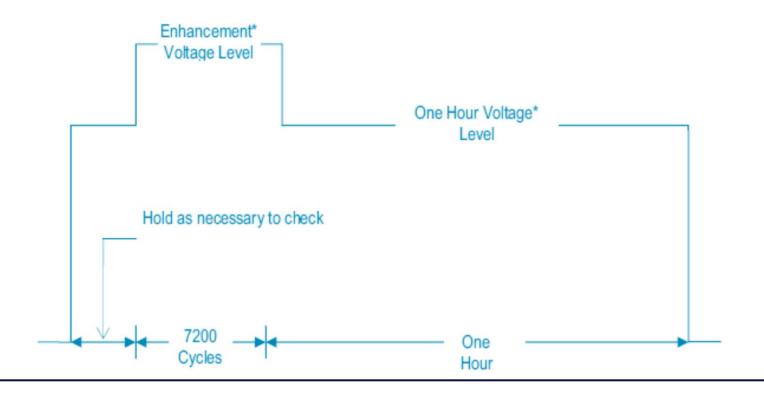


### **Test Connection**

 Three phase voltage is applied to LV terminals at frequency ≥2 times rated frequency; all other line terminals are left open, Neutral and Tank is grounded

### **Test Voltage & Duration**

### Class I Transformers


- Test voltage is equivalent to twice the volts/turn and line end is raised to achieve equivalent power frequency test voltage across phases
- Test duration is 7200 Hz; if test frequency is 180 Hz then test duration = 7200/180 = 40 seconds
- Test is considered to be passed if no collapse of voltage occurs or no audible internal sound is present

## Induced Voltage Test (cont.)



# Test Voltage & Duration Class II Transformers

- Enhancement level 173% maximum tap voltage for 7200 Hz
- One hour test voltage 150% for 1 hour
- Partial discharge limits < = 250 pC</li>



## C57.12.00 - Table 4



#### Table 4—Dielectric insulation levels for Class II power transformers, voltages in kV

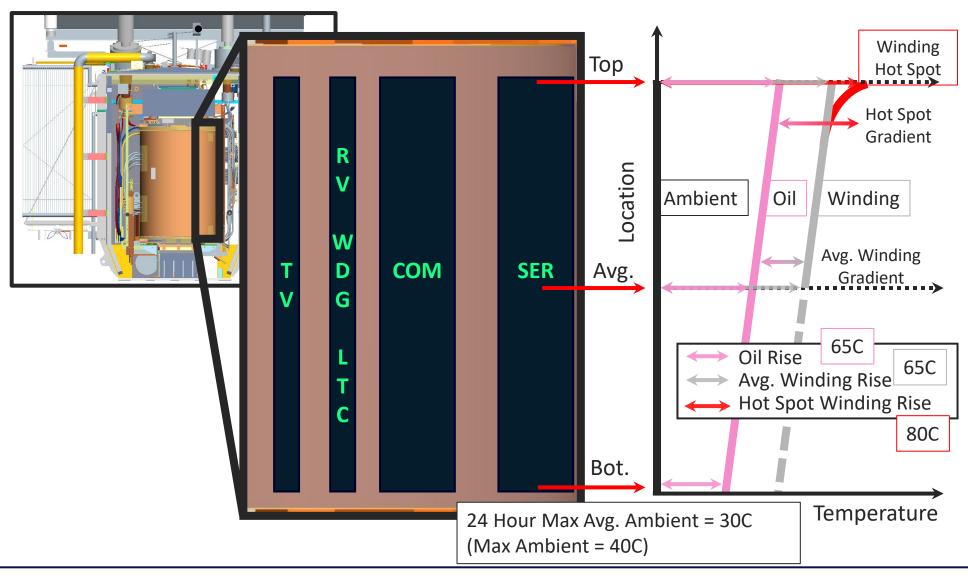
| Maximum<br>system<br>voltage | Nominal<br>system   | A                                    | pplied voltage<br>(kV rms) | test                                                               | Induced voltage test<br>(phase to ground)<br>(kV rms) |             | Winding line-end BIL<br>(kV crest) |       |            | Neutral BIL<br>(kV crest) |                 |                                                                 |
|------------------------------|---------------------|--------------------------------------|----------------------------|--------------------------------------------------------------------|-------------------------------------------------------|-------------|------------------------------------|-------|------------|---------------------------|-----------------|-----------------------------------------------------------------|
| (kV rms)                     | voltage<br>(kV rms) | Delta &<br>fully<br>insulated<br>wye | Grounded<br>wye            | Impedance<br>Grounded wye<br>or Grounded<br>wye with<br>Higher BIL | Enhanced<br>7200<br>cycle                             | One<br>hour | Mini-<br>mum                       |       | Alternates |                           | Grounded<br>wye | Impedance<br>Grounded wye or<br>Grounded wye with<br>Higher BIL |
| Col 1                        | Col 2               | Col 3                                | Col 4                      | Col 5                                                              | Col 6                                                 | Col 7       | Col 8                              | Col 9 | Col 10     | Col 11                    | Col 12          | Col 13                                                          |
| 17                           | 15                  | 34                                   | 34                         | 34                                                                 | 16                                                    | 14          | 110                                |       |            |                           | 110             | 110                                                             |
| 26                           | 25                  | 50                                   | 34                         | 40                                                                 | 26                                                    | 23          | 150                                |       |            |                           | 110             | 125                                                             |
| 36                           | 34.5                | 70                                   | 34                         | 50                                                                 | 36                                                    | 32          | 200                                |       |            |                           | 110             | 150                                                             |
| 48                           | 46                  | 95                                   | 34                         | 70                                                                 | 48                                                    | 42          | 200                                | 250   |            |                           | 110             | 200                                                             |
| 73                           | 69                  | 140                                  | 34                         | 95                                                                 | 72                                                    | 63          | 250                                | 350   |            |                           | 110             | 250                                                             |
| 121                          | 115                 | 173                                  | 34                         | 95                                                                 | 120                                                   | 105         | 350                                | 450   | 550        |                           | 110             | 250                                                             |
| 145                          | 138                 | 207                                  | 34                         | 95                                                                 | 145                                                   | 125         | 450                                | 550   | 650        |                           | 110             | 250                                                             |
| 169                          | 161                 | 242                                  | 34                         | 140                                                                | 170                                                   | 145         | 550                                | 650   | 750        | 825                       | 110             | 350                                                             |
| 242                          | 230                 | 345                                  | 34                         | 140                                                                | 240                                                   | 210         | 650                                | 750   | 825        | 900                       | 110             | 350                                                             |
| 362                          | 345                 | 518                                  | 34                         | 140                                                                | 360                                                   | 315         | 900                                | 1050  | 1175       |                           | 110             | 350                                                             |
| 550                          | 500                 | N/A                                  | 34                         | 140                                                                | 550                                                   | 475         | 1425                               | 1550  | 1675       |                           | 110             | 350                                                             |
| 765                          | 735                 | N/A                                  | 34                         | 140                                                                | 880                                                   | 750         | 1950                               | 2050  |            |                           | 110             | 350                                                             |
| 800                          | 765                 | N/A                                  | 34                         | 140                                                                | 885                                                   | 795         | 1950                               | 2050  |            |                           | 110             | 350                                                             |

NOTE 1- For nominal system voltage greater than maximum system voltage, use the next higher voltage class for applied test levels.

NOTE 2- Induced voltage tests shall be conducted at 1.5 x nominal voltage or one hour and 1.80 X nominal voltage for enhanced 7200 cycle test.

NOTE 3-Column 6 and Column 7 provide phase-to-ground test levels that would normally be applicable to wye windings. When the test voltage level is to be measured phase-to-phase (as is normally the case with delta windings), the levels in Column 6 and Column 7 must be multiplied by 1.732 to obtain the required phase-to-phase induced voltage test level.

NOTE 4-Bold typeface BILs are the most commonly used standard levels.


NOTE 5-Y-Y connected transformers using a common solidly grounded neutral may use neutral BIL selected in accordance with the low-voltage winding rating.

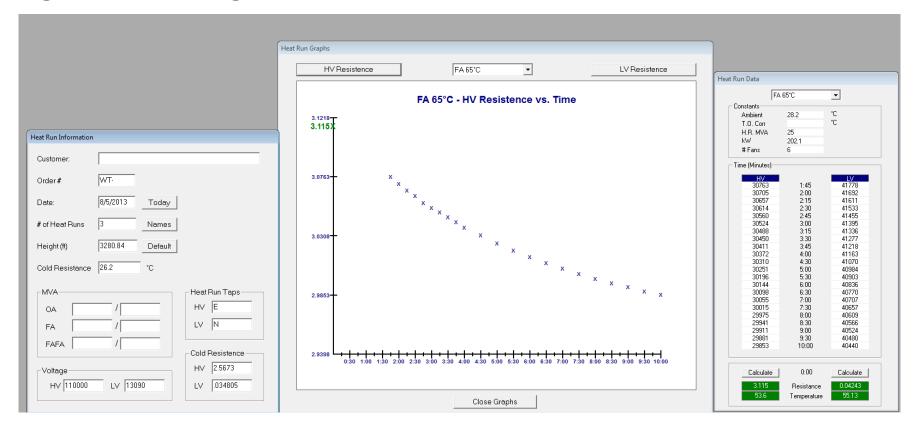
NOTE 6-For 500kV to 765 kV nominal system voltages, induced voltage test levels do not follow rules in Note 2, and 1950 kV BIL is not a standard IEEE level.

NOTE 7- For Neutral BILs greater than 350 KV, Applied Voltage test level shall be specified by user.

## **Temperature Distribution Model**






## Temperature Rise Test – C57.12.90 Section: 11



- Measurements during temperature rise test
  - Top oil temperature
  - Ambient temperatures
  - Top and bottom radiator temperature
  - Hot winding resistance at shut down
- Top Oil Rise = Top oil temperature Average ambient
- Mean oil rise = Top oil temperature Average of top & bottom header temp
- Average winding rise
  - = { (Hot Resistance/Cold Resistance) X (234.5+ambient temp) } Ambient
- Gradient = Average winding rise Mean oil rise
- Hot spot Rise = Top oil rise + Hot spot gradient
- Hot spot gradient = Gradient (1 + k); k = hot-spot factoralculate

## **Average Winding Rise**





$$\theta_2 = \frac{R_2}{R_1} (235 + \theta_1) - 235$$

 $\theta_2$ : Temperature of the winding when the circuit is opened

 $\theta_1$ : Average oil temperature at he beginning of test (cold case)

 $R_2$ : Resistance at temperature  $\theta_2$  ( hot case )

 $R_1$ : Resistance at temperature  $\theta_I$  ( cold case )

## **DGA**

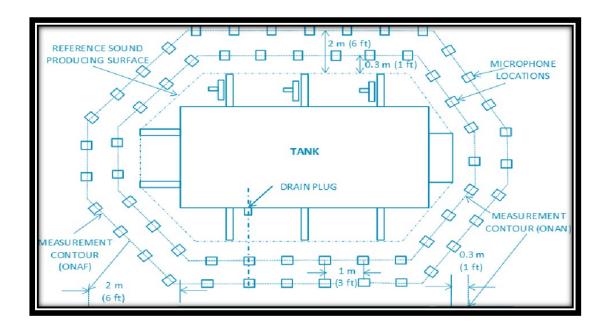


- Before Test, After Dielectric, Before/After Temp Rise test, After all Tests
- Gassing rate depend on many factors Winding temperature rise, Ambient
   Temperature, Duration of test, Design characteristics like current and flux density
- Expect significant difference lab to lab .. Requires ASTM D3612 Method C

Limits per C57.130

|                    | Gas Generation During |
|--------------------|-----------------------|
|                    | Temp Rise Test        |
|                    | PPM/ Hour             |
| Hydrogen H2        | < 1                   |
| Carbon Monoxide CO | < 2                   |
| Carbon dioxide CO2 | < 18                  |
| Methane CH4        |                       |
| Ethane C2H6        | < 0.4                 |
| Ethylene C2H4      |                       |
| Acetylene C2H2     | 0                     |

## Sound Test – C57.12.90 Section: 13




- Core audible sound: This sound component originates in the transformer core
- Load audible sound: This sound component is primarily produced by vibrations of the windings and tank walls when the transformer is loaded.
  - When a transformer is highly loaded, load sound can be a significant contributor to the total sound of the transformer ,especially for low no-load noise medium and large power transformers.
- Cooling system audible sound: typically consists of broadband fan noise, plus discrete tones (of low levels) at the
  fan blade passage frequency and its harmonics.
- The sum of core and cooling system sound components is typically referred to as the no-load noise of a transformer.
- The total audible sound of the transformer, however, is the sum of all three components, 2015 standard outlines measurement methods for Load sound and calculation to arrive Total sound.
- Sound levels are specified in NEMA-TR1 and that is only No-Load Sound Level
- Load Sound is not significant for smaller transformers ( < 100 MVA) unless No load sound required is below NEMA

## Sound Test – Measurement



- Measurements are generally taken on a weighted scale as per NEMA standard
- Location of measurements start at drain plug and around the transformer at approximate 3
  foot intervals, 12 inches away from transformer tank/radiators as applicable at 1/3 and 2/3
  heights for transformers over 9 feet
- With fans running readings are taken 6 feet distance



## Other Tests



- Bushing Cap & PF C1/C2
- Core excitation test typically 110% for 24 Hours
- Leakage Reactance test
- Front of Wave Impulse testing
- Frequency response analysis (FRA)
- Fast Front Switching Impulse (FFSI)
- LTC Tests
  - Operate LTC at No Load Voltage
  - Operate LTC under Load
  - Dynamic Resistances
  - DGA from LTC



# Questions



#### Contact

Joshua Jordan Senior Electrical Design Engineer

Prolec-GE Waukesha, Inc. Waukesha WI 53186 Joshua.Jordan@prolec.energy T: (262) 446-8894

www.waukeshatransformers.com